数学必修三1.1教案5篇

时间:
lcbkmm
分享
下载本文

一份优秀的教案能够帮助教师在课堂中实现更高效的知识传递,教案可以作为新教师的指导手册,帮助他们快速适应教学环境,公文溜溜小编今天就为您带来了数学必修三1.1教案5篇,相信一定会对你有所帮助。

数学必修三1.1教案5篇

数学必修三1.1教案篇1

一、教学目标

1、知识与技能:

(1)通过实物操作,增强学生的直观感知。

(2)能根据几何结构特征对空间物体进行分类。

(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

(4)会表示有关于几何体以及柱、锥、台的分类。

2、过程与方法:

(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

(2)让学生观察、讨论、归纳、概括所学的知识。

3、情感态度与价值观:

(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

(2)培养学生的空间想象能力和抽象括能力。

二、教学重点

让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

难点:柱、锥、台、球的结构特征的概括。

三、教学用具

(1)学法:观察、思考、交流、讨论、概括。

(2)实物模型、投影仪。

四、教学过程

(一)创设情景,揭示课题

1、由六根火柴最多可搭成几个三角形?(空间:4个)

2在我们周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?

3、展示具有柱、锥、台、球结构特征的空间物体。

问题:请根据某种标准对以上空间物体进行分类。

(二)、研探新知

空间几何体:多面体(面、棱、顶点):棱柱、棱锥、棱台;

旋转体(轴):圆柱、圆锥、圆台、球。

1、棱柱的结构特征:

(1)观察棱柱的几何物体以及投影出棱柱的图片,

思考:它们各自的特点是什么?共同特点是什么?

(学生讨论)

(2)棱柱的主要结构特征(棱柱的概念):

①有两个面互相平行;

②其余各面都是平行四边形;

③每相邻两上四边形的公共边互相平行。

(3)棱柱的表示法及分类:

(4)相关概念:底面(底)、侧面、侧棱、顶点。

2、棱锥、棱台的结构特征:

(1)实物模型演示,投影图片;

(2)以类似的方法,根据出棱锥、棱台的结构特征,并得出相关的概念、分类以及表示。

棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形。

棱台:且一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。

3、圆柱的结构特征:

(1)实物模型演示,投影图片——如何得到圆柱?

(2)根据圆柱的概念、相关概念及圆柱的表示。

4、圆锥、圆台、球的结构特征:

(1)实物模型演示,投影图片

——如何得到圆锥、圆台、球?

(2)以类似的方法,根据圆锥、圆台、球的结构特征,以及相关概念和表示。

5、柱体、锥体、台体的概念及关系:

探究:棱柱、棱锥、棱台都是多面体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?

圆柱、圆锥、圆台呢?

6、简单组合体的结构特征:

(1)简单组合体的构成:由简单几何体拼接或截去或挖去一部分而成。

(2)实物模型演示,投影图片——说出组成这些物体的几何结构特征。

(3)列举身边物体,说出它们是由哪些基本几何体组成的。

(三)排难解惑,发展思维

1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱?(反例说明)

2、棱柱的何两个平面都可以作为棱柱的底面吗?

3、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

(四)巩固深化

练习:课本p7练习1、2;课本p8习题1、1第1、2、3、4、5题

(五)归纳整理

由学生整理学习了哪些内容。

数学必修三1.1教案篇2

课题:命题

课时:001

课型:新授课

教学目标

1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;

2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;

3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

教学重点与难点

重点:命题的概念、命题的构成

难点:分清命题的条件、结论和判断命题的真假

教学过程

一、复习回顾

引入:初中已学过命题的知识,请同学们回顾:什么叫做命题?

二、新课教学

下列语句的表述形式有什么特点?你能判断他们的真假吗?

(1)若直线a∥b,则直线a与直线b没有公共点.

(2)2+4=7.

(3)垂直于同一条直线的两个平面平行.

(4)若x2=1,则x=1.

(5)两个全等三角形的面积相等.

(6)3能被2整除.

讨论、判断:学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。

教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。

抽象、归纳:

1、命题定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.

命题的定义的要点:能判断真假的陈述句.

在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.

例1:判断下列语句是否为命题?

(1)空集是任何集合的子集.

(2)若整数a是素数,则是a奇数.

(3)指数函数是增函数吗?

(4)若平面上两条直线不相交,则这两条直线平行.

(5)=-2.

(6)x>15.

让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.

解略。

引申:以前,同学们学习了很多定理、推论,这些定理、推论是否是命题?同学们可否举出一些定理、推论的例子来看看?

通过对此问的思考,学生将清晰地认识到定理、推论都是命题.

过渡:同学们都知道,一个定理或推论都是由条件和结论两部分构成(结合学生所举定理和推论的例子,让学生分辨定理和推论条件和结论,明确所有的定理、推论都是由条件和结论两部分构成)。紧接着提出问题:命题是否也是由条件和结论两部分构成呢?

2、命题的构成――条件和结论

定义:从构成来看,所有的命题都具由条件和结论两部分构成.在数学中,命题常写成“若p,则q”或者“如果p,那么q”这种形式,通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题结论.

例2:指出下列命题中的条件p和结论q,并判断各命题的真假.

(1)若整数a能被2整除,则a是偶数.

(2)若四边行是菱形,则它的对角线互相垂直平分.

(3)若a>0,b>0,则a+b>0.

(4)若a>0,b>0,则a+b<0.

(5)垂直于同一条直线的两个平面平行.

此题中的(1)(2)(3)(4),较容易,估计学生较容易找出命题中的条件p和结论q,并能判断命题的真假。其中设置命题(3)与(4)的目的在于:通过这两个例子的比较,学更深刻地理解命题的定义——能判断真假的陈述句,不管判断的结果是对的还是错的。

此例中的命题(5),不是“若p,则q”的形式,估计学生会有困难,此时,教师引导学生一起分析:已知的事项为“条件”,由已知推出的事项为“结论”.

解略。

过渡:从例2中,我们可以看到命题的两种情况,即有些命题的结论是正确的,而有些命题的结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题.

3、命题的分类

真命题:如果由命题的条件p通过推理一定可以得出命题的结论q,那么这样的命题叫做真命题.

假命题:如果由命题的条件p通过推理不一定可以得出命题的结论q,那么这样的命题叫做假命题.

强调:

(1)注意命题与假命题的区别.如:“作直线ab”.这本身不是命题.也更不是假命题.

(2)命题是一个判断,判断的结果就有对错之分.因此就要引入真命题、假命题的的概念,强调真假命题的大前提,首先是命题。

判断一个数学命题的真假方法:

(1)数学中判定一个命题是真命题,要经过证明.

(2)要判断一个命题是假命题,只需举一个反例即可.

例3:把下列命题写成“若p,则q”的形式,并判断是真命题还是假命题:

(1)面积相等的两个三角形全等。

(2)负数的立方是负数。

(3)对顶角相等。

分析:要把一个命题写成“若p,则q”的形式,关键是要分清命题的条件和结论,然后写成“若条件,则结论”即“若p,则q”的形式.解略。

三、巩固练习:

p4第2,3。

四、作业:

p8:习题1.1a组~第1题

五、教学反思

师生共同回忆本节的学习内容.

1、什么叫命题?真命题?假命题?

2、命题是由哪两部分构成的?

3、怎样将命题写成“若p,则q”的形式.

4、如何判断真假命题.

数学必修三1.1教案篇3

目的要求:

1.复习巩固求曲线的方程的基本步骤;

2.通过教学,逐步提高学生求贡线的方程的能力,灵活掌握解法步骤;

3.渗透“等价转化”、“数形结合”、“整体”思想,培养学生全面分析问题的能力,训练思维的深刻性、广阔性及严密性。

教学重点、难点:

方程的求法教学方法:讲练结合、讨论法

教学过程:

一、学点聚集:

1.曲线c的方程是f(x,y)=0(或方程f(x,y)=0的曲线是c)实质是

①曲线c上任一点的坐标都是方程f(x,y)=0的解

②以方程f(x,y)=0的解为坐标的点都是曲线c上的点

2.求曲线方程的基本步骤

①建系设点;

②寻等列式;

③代换(坐标化);

④化简;

⑤证明(若第四步为恒等变形,则这一步骤可省略)

二、基础训练题:

221.方程x-y=0的曲线是()

a.一条直线和一条双曲线b.两个点c.两条直线d.以上都不对

2.如图,曲线的方程是()

a.x?y?0 b.x?y?0 c.

xy?1 d.

x?1 y3.到原点距离为6的点的轨迹方程是。

4.到x轴的距离与其到y轴的距离之比为2的点的轨迹方程是。

三、例题讲解:

例1:已知一条曲线在y轴右方,它上面的每一点到a?2,0?的距离减去它到y轴的距离的差都是2,求这条曲线的方程。

例2:已知p(1,3)过p作两条互相垂直的直线l

1、l2,它们分别和x轴、y轴交于b、c两点,求线段bc的中点的轨迹方程。

2例3:已知曲线y=x+1和定点a(3,1),b为曲线上任一点,点p在线段ab上,且有bp∶pa=1∶2,当点b在曲线上运动时,求点p的轨迹方程。

巩固练习:

1.长为4的线段ab的两个端点分别在x轴和y轴上滑动,求ab中点m的轨迹方程。

22.已知△abc中,b(-2,0),c(2,0)顶点a在抛物线y=x+1移动,求△abc的重心g的轨迹方程。

思考题:

已知b(-3,0),c(3,0)且三角形abc中bc边上的高为3,求三角形abc的垂心h的轨迹方程。

小结:

1.用直接法求轨迹方程时,所求点满足的条件并不一定直接给出,需要仔细分析才能找到。

2.用坐标转移法求轨迹方程时要注意所求点和动点之间的联系。

作业:

苏大练习第57页例3,教材第72页第3题、第7题。

数学必修三1.1教案篇4

教学目标

1、知识与技能

(1)推广角的概念、引入大于角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与角终边相同的角(包括角)的表示方法;(5)树立运动变化观点,深刻理解推广后的角的概念;(6)揭示知识背景,引发学生学习兴趣.(7)创设问题情景,激发学生分析、探求的学习态度,强化学生的参与意识.

2、过程与方法

通过创设情境:“转体,逆(顺)时针旋转”,角有大于角、零角和旋转方向不同所形成的角等,引入正角、负角和零角的概念;角的概念得到推广以后,将角放入平面直角坐标系,引入象限角、非象限角的概念及象限角的判定方法;列出几个终边相同的角,画出终边所在的位置,找出它们的关系,探索具有相同终边的角的表示;讲解例题,总结方法,巩固练习.

3、情态与价值

通过本节的学习,使同学们对角的概念有了一个新的认识,即有正角、负角和零角之分.角的概念推广以后,知道角之间的关系.理解掌握终边相同角的表示方法,学会运用运动变化的观点认识事物.

教学重难点

重点:理解正角、负角和零角的定义,掌握终边相同角的表示法.

难点:终边相同的角的表示.

教学工具

投影仪等.

教学过程

?创设情境】

思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25

小时,你应当如何将它校准?当时间校准以后,分针转了多少度?

[取出一个钟表,实际操作]我们发现,校正过程中分针需要正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容——任意角.

?探究新知】

1.初中时,我们已学习了角的概念,它是如何定义的呢?

[展示投影]角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置,绕着它的端点o按逆时针方向旋转到终止位置ob,就形成角a.旋转开始时的射线叫做角的始边,ob叫终边,射线的端点o叫做叫a的顶点.

2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体”(即转体2周),“转体”(即转体3周)等,都是遇到大于的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几个现实生活中“大于的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?

[展示课件]如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角,这些都说明了我们研究推广角概念的必要性.为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角(positiveangle),按顺时针方向旋转所形成的角叫负角(negativeangle).如果一条射线没有做任何旋转,我们称它形成了一个零角(zeroangle).

8.学习小结

(1)你知道角是如何推广的吗?

(2)象限角是如何定义的呢?

(3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直

线上的角的集合.

五、评价设计

1.作业:习题1.1a组第1,2,3题.

2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,

进一步理解具有相同终边的角的特点.

课后小结

(1)你知道角是如何推广的吗?

(2)象限角是如何定义的呢?

(3)你熟练掌握具有相同终边角的表示了吗?会写终边落在x轴、y轴、直

线上的角的集合.

课后习题

作业:

1、习题1.1a组第1,2,3题.

2.多举出一些日常生活中的“大于的角和负角”的例子,熟练掌握他们的表示,

进一步理解具有相同终边的角的特点.

数学必修三1.1教案篇5

教学目标:

1、理解集合的概念和性质。

2、了解元素与集合的表示方法。

3、熟记有关数集。

4、培养学生认识事物的能力。

教学重点:

集合概念、性质

教学难点:

集合概念的理解

教学过程:

1、定义:

集合:一般地,某些指定的对象集在一起就成为一个集合(集)。元素:集合中每个对象叫做这个集合的元素。

由此上述例中集合的元素是什么?

例(1)的元素为1、3、5、7,

例(2)的元素为到两定点距离等于两定点间距离的点,

例(3)的元素为满足不等式3x—2> x+3的实数x,

例(4)的元素为所有直角三角形,

例(5)为高一·六班全体男同学。

一般用大括号表示集合,{?}如{我校的.篮球队员},{太平洋、大西洋、印度洋、北冰洋}。则上几例可表示为??

为方便,常用大写的拉丁字母表示集合:a={我校的篮球队员},b={1,2,3,4,5}

(1)确定性;(2)互异性;(3)无序性。

3、元素与集合的关系:隶属关系

元素与集合的关系有“属于∈”及“不属于?(?也可表示为)两种。如a={2,4,8,16},则4∈a,8∈a,32?a。

集合的元素通常用小写的拉丁字母表示,如:a是集合a的元素,就说a属于集a记作a?a,相反,a不属于集a记作a?a(或)

注:1、集合通常用大写的拉丁字母表示,如a、b、c、p、q??

元素通常用小写的拉丁字母表示,如a、b、c、p、q??

2、“∈”的开口方向,不能把a∈a颠倒过来写。

4

注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。

(2)非负整数集内排除0的集。记作nxx或n+ 。q、z、r等其它数集内排除0

的集,也是这样表示,例如,整数集内排除0的集,表示成zxx

请回答:已知a+b+c=m,a={x|ax2+bx+c=m},判断1与a的关系。

数学必修三1.1教案5篇相关文章:

三年级数学培优工作计划5篇

物理必修二教学工作计划5篇

三年级上册数学工作计划6篇

数学演讲稿三分钟演讲8篇

三年级数学学期工作总结8篇

2023年三年级数学工作总结7篇

三年级数学教师下学期工作总结7篇

小学三年级数学教学工作总结优秀6篇

小学三年级数学下册教学总结7篇

小学三年级数学培优工作总结6篇

数学必修三1.1教案5篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
172093