教案的编写可以使教师更好地组织教学内容和活动,实用的教案可以帮助教师明确教学目标和内容,使教学更加有针对性和有效性,公文溜溜小编今天就为您带来了真分数和假分数的教案8篇,相信一定会对你有所帮助。
真分数和假分数的教案篇1
教学目标:使同学学会把整数或带分数化成假分数的方法,并能正确地把整数或带分数化成假分数.
教学重点:熟练地进行整数或带分数化成假分数.
教学难点:能进行知识运用,培养实践能力
教学课型:新授课
教具准备:课件
教学过程:
一,复习铺垫,准备迁移
1,用分数的意义说明下列分数,以和每个分数的分母,分子和分数单位.[课件1]
3/4 2/2 1/6 5/5 7/7 8/23
2,在括号里填上适当的'数.[课件2]
2个1/3是( )/( ) 6个1/6是( )/( )
8个1/8是( )/( ) l4个1/2是( )/( )
18个1/5是( )分之( ) 17个1/4是( )/( )
二,探究新知,激发思维
1,教学p103 .例 5: 把1化成分母分别是2,3,4,5,…的分数.
提问:a,说说图意是什么 你有没有反对的意见
板书: 1=2/2=3/3=4/4=5/5=……
b,其它整数能不能化成分母是任意非0自然数的假分数呢
2,教学p103 .例 6: 把2和5分别化成分母是3的假分数.
(1)同桌相互说说怎样把2和5化成分母是4的分数.
(2)集体说说怎样把一个整数化成指定分母的分数
(3)小结:把整数(0除外)化成假分数,用指定的分母(0除外)作分母,用分母和整数(0除外)的乘积作分子.
※ 把1,2,5化成分母是1的假分数.
3,教学p104 .例 7: 把2 化成分母是5的假分数.
(1)提问:a,谁能说说假分数是怎样化成带分数的
b,那么,由此和彼,怎样把带分数化成假分数呢
(2)板书: 2 =5×2+4/5=14/5
(3)小结:把带分数化成假分数,用原来的分母作分母,把分母和整数的乘积再加上原来的分子作分子.
※ p104 .做一做1,2
三,总结反馈,巩固提高
1,总结:今天我们学习的内容是什么
2,p105 .1,3
四,家作
p105 .2
板书设计: 把整数或带分数化成假分数
p103 .例 5 1=2/2=3/3=4/4=5/5=…… 把整数(0除外)化成假分数,用指定的分母(0除外)作分母,用分母和整数(0除外)的乘积作分子.
p103 .例 6 把2和5分别化成分母是3的假分数.
把带分数化成假分数,用原来的分母作分母,把分母和整数的乘积再加上原来的分子作分子.
真分数和假分数的教案篇2
猜想是人们以自己已有的知识为基础,通过对问题的分析、归纳或将其与有类似关系的特例进行比较、分析,通过判断、推理对问题结果作出的估测。探索在我们的教学中是指教师采用各种有效的手段,引导学生经过自己的努力,去发现问题、提出问题、解决问题,进而得出正确的结论。本节课设计力求体现“猜想—探索”式教学——大胆猜想、主动探索,最大限度地张扬孩子的个性,挖掘孩子的创新意识和创新能力。
教学目标:
1、理解并掌握“真分数”和“假分数”的意义,初步感知假分数能化成整数或带分数。
2、经历猜测、观察、分类和归纳等活动过程,发展学生的观察能力、合作能力、说理能力。
3、通过活动初步养成质疑、独立思考和善于聆听的好习惯,在教学活动中体验数学是充满着探索和创造,体验获得成功的喜悦,激发学生学习数学的兴趣和求知欲。
教学重点:理解和掌握“真分数”和“假分数”的意义,初步感知假分数能化成整数或带分数。
教学难点:如何在活动中理解假分数的意义。
学具准备:小圆片、小纸条
教学程序:
一、谈话导入 激发兴趣
上课之前先请个同学说说分数的意义是什么?
看来大家对学过的知识掌握的不错,其实今天我们一起学习的内容也比较简单,只要大家能理解这两个字就一定能学好,哪两个字呢?板书“大、小”
出示一件物品,*你觉得用哪个字比较合适?
生1:大。生2:小。生3:应该用其它物品比较下才能说。
看来你是一个非常谨慎、聪明的人,那我就满足你的要求------出示另一物品,(感受大小是相对的!)
二、小组合作 探索新知
板块一:以活动为平台,探索真、假分数的意义
1、通过猜测分子与分母的关系,生成研究活动所需的素材
生活中的物品有大小关系,我们数学中也有很多的大小关系。谁能大胆猜测下分数的分子和分母的大小关系,可能会有几种情况?
(板书):
(1)分子比分母小
(2)分子和分母相等
(3)分子比分母大
对于同学们刚才的猜测三种情况,谁能尝试举些例子吗?你能说出分母相同的吗?(引导一组数据尽量分母一样,可根据情况补上一组容易操作的分数,如分母是2、4)
2、在活动中感知真、假分数的意义
同学们,刚才我们只是通过猜测分子和分母的大小关系,尝试写出了这么多的数据,那这些分数是否都有它们的意义呢?接下来就是你们大显身手的时候了,请你们以同桌为一小组,选择黑板上的一组数据,用画一画、涂一涂的方法把你所选的一组分数在学具上表示出来,老师为每个小组都准备了一份学具(选择一种学具),你们能行吗!
(1)操作建议
1、操作中尽量要做到平均分。
2、尽量把你选择的一组分数都要表示出来
3、如遇到困难,可以向旁边的任何人(同学、老师、听课老师)请求帮助。
4、汇报时请说明你们是把什么看作单位“1”。
活动过程中巡视指导,特别留意学生对分子比分母大的分数如何表示
学生汇报演示
(2)交流预设
第一组:我们都是把一个圆看作单位“1”
(分子比分母小的分数意义):把单位“1”平均。表示这样的。
(分子和分母相等的分数意义):把单位“1”平均。表示这样的。
(分子比分母大的分数意义):把单位“1”平均。表示这样的。
可能有学生质疑:如3/2其实就是3/4。可以引导学生进行讨论,说说自己的想法,把握关键------你是把什么看做单位“1”
请选择不同数据的小组汇报
(3)小结,再比较
刚才通过同学们的研究,原来我们的猜测是正确的,根据分子和分母的大小关系,确实有这三种分数存在,而且有各自的意义。那么我们再回顾下,刚才操作的时候同学们都是把什么看做单位“1”?那你们有没有发现这三种分数跟单位“1”的大小关系又如何呢?
生汇报:分子比分母小的分数
分子和分母相等的分数=1 你觉得=1的分数还有哪些?
分子比分母大的分数 >1(板书)
师:你是怎么发现的?生验证:分子比分母小的分数没有涂满
分子和分母相等的分数刚好涂满
分子比分母母大的分数满出来了
师:你们都同意他的发现吗?
(4)验证揭题
小结:*刚才同学们通过大胆猜测、活动验证,根据分子和分母的大小关系进行分类,我们的数学书上也是如此,还给他们取了名字。板书:真分数、假分数。(揭题)这也是我们今天这节课的研究课题。
现在谁知道什么是真分数?什么是假分数?(适时加上2个“或”字)
板块二:以学生的求知欲为基点,探索假分数
3、过度:*同学们回想下我们在这节课之前接触到的分数都是属于那种分数,那你们接下想更多的了解哪种分数——假分数,那接下来就满足大家的要求,一起来研究下假分数
a、假分数化成整数
出示一组分子是分母倍数的假分数——4/2、8/4、9/3
(1)观察分子和分母,有什么发现?------分子是分母的倍数
(2)这样的分数谁能帮老师在线段图上标出来?
(3)在线段图上发现:4/2=2 8/4=2 9/3=3——能化成整数
(4)小结:谁能总结下怎样的假分数能化成整数(分子是分母的倍数)。
b假分数化成带分数
观察:黑板上的假分数能不能化成整数呢?
(1)分子是分母的倍数吗?那这个分数又可以化成什么呢
( 图片展示)
(2)借助学生操作的图片以说明如:3/2=1+1/2=1又1/2
得出:分子不是分母的倍数的假分数,可以看作是整数和真分数合成的数。叫带分数。
写作: 读作:一又三分之??
(3)把黑板上其余假分数化成带分数
三、应用知识 互动练习
1、下面老师要考考大家对这节课的掌握情况,老师报分数,学生说是什么分数,看看谁的反应又快又准
2、四个小朋友正在讨论我们这节课的知识,快去看看他们都说了什么?
小明:分母比分子大的分数是真分数。
小方:假分数都大于1。
小王:所有的真分数都小于假分数。
小刚:假分数都能转化成整数。
3、看来上面这些都难不倒你们,接下来敢接受我的挑战吗?请准备好纸和笔,挑战之前有个要求:要注意听,问题要考虑周到!如果你有什么发现请马上举手!
(1)写出分母是2的真分数
真分数有( )个 分母是3、4能? 分母是6、10呢?
你发现了;
(2)写出分子是2的假分数
假分数有( )个 分子是3、4能? 分子是6、10呢?
你发现了;
剩下2分钟总结
四、回顾总结
1、这节课你学会了什么?(数学知识)
2、你知道你是怎样学会今天的知识?(学习方法)
总结:在生活中、学习中遇到问题时,若能敢于猜测,敢于探索,适当时请求同学、老师、家长的支援,知识就会陪伴你一起成长!
真分数和假分数的教案篇3
教学目标:
1、知道带分数是假分数,是整数与真分数合成的数
2、会把假分数化成整数或带分数,会进行分数与小数的互化
3、使学生经历假分数化成整数或带分数,分数与小数互化的探索过程,进一步发展数感。
4、培养良好的学习习惯,树立学好数学的信心。
教学重、难点:会把假分数化成整数或带分数,会进行分数与小数的互化。
教学过程:
一、谈话导入
同学们还记得假分数吗?举几个例子,教师随机补充
1、有意识地把假分数分成2类(一类是能化成整数,另一类是不能化成整数的)
二、教学例7
1、根据学生实际举例进行教学(设计的时候就用书上的例子进行)
2、出示假分数
=()=()=()
①同学们想想,把这些假分数化成整数分别是多少?
②把自己的想法在小组里交流交流
③交流方法:
④:在刚才的交流中,能够化成整数的假分数的分子分母有什么特点?
⑤归纳特点:能化成整数的假分数,它的分子一定是分母的倍数,是几倍化成整数就是几?
⑥小练习:a
b你能举几个能化成整数的假分数
3、教学带分数
①同学们在刚才距离的过程当中,还有这一部分的假分数能化成整数吗?(指着黑板上剩下的另一部分假分数)例如
②交流:不能化成整数的假分数,可以化成一个整数和一个分数合起来的分数,例如:可以分成和,写成1,想这样的分数叫带分数,读作:一又三分之??
③教学=1,让学生在数轴上看一看,进一步理解假分数,带分数的联系。
④老师随机板书,写几个带分数让学生读一读
4、教学例8
①怎样把化成带分数
②学生尝试计算,教师巡视
③交流方法:a可能是画图的
b可能是计算的,可分成8个和3个,8个等于2,在加上就是2。
④读一读这个带分数
⑤教师介绍用除法计算来转化:=11÷4=2
⑥方法:请同学们想想怎样用除法直接把假分数化成整数或带分数。
⑦完成书上47页练一练
三、练习
1、完成练习九第1、3题
学生尝试练习,教师讲评有错误的题目,找出原因进行修正。
2、完成练习九的第2题
①先审题
②尝试练习
③说说为什么想到用这个分数来分析
④改写成带分数
⑤交流
3、完成练习九的第4题
①先让学生看懂题意:0-1之间平均分成3份,每一份是,3个就是1,往后一格就是4个==1
②学生尝试填写其他空格
③交流
4、布置课堂作业
完成练习九的第5题
四、
今天学习了什么,有哪些收获?
真分数和假分数的教案篇4
教学目标:使同学理解和掌握真分数,假分数的意义和特征,学会把假分数化成整数.
教学重点:真分数和假分数的特征.
教学难点:等于1的假分数.
教学课型:新授课
教具准备:课件
教学过程:
一,激发兴趣,引出概念
1,真分数和假分数的意义和特征
(1)观察比较下列每个分数中分子,分母的大小,并试着按一定的原则把这些分数分组.[课件1]
1/3 3/3 3/4 1/5 5/6 2/5 3/5
4/5 5/5 7/4 9/5 10/5 11/5 15/5
① 板述:分子比分母小的分数叫做真分数.
分子比分母大或者分子和分母相等的分数,叫做假分数.
※ 请说出3个真分数,3个假分数.
② 观察比较:a,说一说第二组中的两个分数的意义 这样的分数等于多少
b,再请观察第一,三组的分数的分子与分母的大小关系,分数值
与1的关系,你发现有没有规律
板书:真分数小于1;假分数等于或大于1.
(2)在下面的线段图上,哪一段上的点表示的是真分数 哪一段上的点表示的是假分数 [课件2]
(3)揭示课题:
由图上可以清楚地看到,真分数,假分数实际上是以1为界,把分数分为了两类.所以这节课我们看上去研究的是分数的分子和分母的大小关系,而实质却是真分数和假分数.
板书课题:真分数和假分数的意义和特征
※ ① 下面分数中哪些是真分数 哪些是假分数 [课件3]
1/3 3/3 5/3 1/6 6/6 7/6 13/6
② 把上一题中的分数用直线上的点表示出来,看一看表示真分数的点和表示假分数的点,分别在直线的哪一段上.[课件4]
2,把假分数化成整数.
观察下列分数,它们有没有一起的特点 [课件5]
3/3 5/5 10/5 15/5
提问:a,这些假分数还可以用什么数来表示
b,我们可以用什么方法把它们化成整数 这样计算的依据是什么
(分子除以分母,分数与除法的关系.)
(2)教学p99 .例 3 : 把3/3,8/4化成整数.
板书: 3/3=3÷3=1 提问:a,3÷3表示什么
8/4=8÷4=2 b,8÷4表示什么
c,说一说怎样把假分数化为整数
(3)练习:把8/2,9/3,4/4,12/6化成整数. [课件6]
二,巩固练习,提高能力
1,说出四个分母是7的真分数.
2,说出3个分数值是1的假分数.
3,说出两个分母是9,分数值比1大又比2小的假分数.
4,把下面这些分数化为整数.[课件7]
24/4 25/5 72/4 54/6 100/25
5,判断正误,并说明理由.[课件8]
(1)分母比分子大的分数是真分数. (2)假分数的分子比分母大. 6,分数a/b中,当a,b分别是什么数时,它为真分数 什么数时,它为假分数
三,全课总结,笼统概括
提问:怎样将真分数,假分数,假分数化整数
四,家作
p 101 .1,2,3
板书设计: 真分数和假分数的意义和特征
分子比分母小的分数叫做真分数.例:1/2,3/5,11/12 真分数
分子比分母大或者分子和分母相等的分数,叫做假分数.例:5/3,8/8 假分数≥1.
真分数和假分数的教案篇5
教学目标
1、理解、掌握真分数、假分数、带分数的意义和特征。
2、能正确读写带分数。
教学重点、难点
重点、难点:理解真分数、假分数、带分数的意义。
教具、学具准备
教 学过程
备注
一、复习铺垫
1、说说下面各分数所表示的意义及它们的分数单位,各有几个这样的分数单位?
364/7
2、填空
3个1/3是()4/4有()个1/4
2/5有()个1/22是()个1/3
()个1/5是19个1/8是()
二、导入新课
1、出示准备题。学生口答,教师在相应的集合圈里填上分数。
2、导入新课
上面两个集合圈内填的两种不同情况的分数,它们各有什么特点,叫什么分数,这是今天要学的内容。
出示课题“真分数和假分数”
三、教学新知
1、出示例1。
(1)请三位学生分别在图中阴影表示指定的分数,其余同学做在书上。
(2)观察3/4、5/6、7/8这三个分数和相应的图中的阴影部分,比较各分数中的分子和分母的大小有什么共同的特点?
3/4、5/6、7/8的分子都比分母小,像这样的分数叫做真分数。即分子比分母小的分数,叫做真分数。
(3)指导学生看图,指出真分数比1小。
(4)练一练。
a、写出三个真分数。
b、写出分母是5的真分数。
2、教学例2。
(1)出示例2图。
(2)观察直线上的点所表示的分数3/3、4/3、6/3、7/3与前面所学的真分数有什么不同?
教学过程
备 注
(3)这些分数的大小与1相比较有什么特征?
从而得出:3/3的分子与分母相等,3/3=1,4/3、6/3、7/3的分子比分母大,这些分数都比1大。
4/3、6/3、7/3、3/3的分子比分母大,或者分子与分母相等,像这样的分数叫做假分数。即分子比分母大,或者分子和分母相等的分数叫做假分数。
(4)练一练
a、说出四个假分数,说说什么叫做分数。
b、写出分子是5的所有假分数。
3、带分数的认识
(1)观察6/3、3/3它们的分子和分母有什么关系?(分子是分母的倍数)
3/3=1(3个3/1是1)
6/3=2(6个1/3是2)
分子是分母的倍数的假分数,实际上都是整数。
(2)4/3、7/3分子不是分母的倍数。
3/3(就是1)
4/3(4个1/3)1又1/3(带分数)
1/3(真分数)
1又1/3读作一又三分之??
6/3(就是2)
7/3(7个1/3)2又1/3(带分数)
1/3(真分数)
2又1/3读作二又三分之??
同理5/4可以写作(),读作();
11/8可以写作(),读作();
(3)归纳:一个整数和一个真分数合成的数,叫做带分数。
四、练习反馈
1、课本p83第1、2题
2、根据要求写出分数
(1)写出3个分母是9个的假分数。
(2)写出3个分子是分母的`倍数的假分数。
(3)写出3个假分数。
五、学习小结:
六、课堂作业:《作业本》
本课内容比较简单,也比较直观,仅是从分数的分子、分母的大小的比较中认识真分数、假分数、带分数,因此,学生都掌握得较好。在直线上表示某个带分数有个别学生还有困难。
真分数和假分数的教案篇6
教学内容:教科书第47页,例7、例8、练一练,练习九第1~6题。
教学目标:
1、使学生探索并掌握把假分数化成整数或带分数的方法,知道带分数是整数和真分数合成的数。
2、使学生在探索中,进一步发展数感,培养观察、比较、抽象、概括等能力。
教学重点、难点:掌握把假分数化成整数或带分数的方法,知道带分数是整数和真分数合成的数。
教学过程:
一、复习引入
今天我们将继续研究假分数,谁来说说什么是假分数?(板书:假分数)你能举例说一些假分数吗?学生举出的例子老师分两栏板书,左边一栏写能化成整数的假分数,右边一栏写能化成带分数的假分数。
二、教学新课
1、教学例7。
然后指左边一栏,你能将这些假分数化成整数吗?小组里交流说说你的想法。
(2)交流汇报方法:
a.根据分数与除法的关系,用分子÷分母4/4=4÷4=110/5=10÷5=228/7=28÷7=4
b.根据分数的意义:4/4就是4个1/4,4个1/4是1;10/5是10个1/5,5个1/5是1,10个1/5是2。
c.还可以画图看一看。
哪种方法转化更简便?(分子÷分母)
(3)观察一下,能化成整数的假分数有什么共同特点呢?(分子是分母的倍数)
小结:能化成整数的假分数,它们的分子都是分母的倍数。反过来,分子是分母倍数的假分数,能化成整数。
完成练习九的第一题。
(4)那么:4/3、7/3、11/8能化成整数吗?为什么?(分子不是分母的倍数)
(6)带分数的意义。
出示数轴。
你能在数轴上找到4/3这个点吗?
(4/3是4个1/3,从0开始数出4个1/3。)
(3个1/3是1,在1后面再数1个1/3就是4/3。)
指出:分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。
如4/3就是3/3和1/3合成的数,写作1/3,读作一又三分之一。
说说5/3是几和几分之几合成的数?读作什么?数轴上的点在哪里?
2、教学例8。
(1)出示例8。
(2)怎样把11/4化成带分数呢?
尝试练习,巡视指导。
(3)交流汇报方法:
(可以画图;)
(11/4有11个1/4,8个1/4是2,3个1/4是3/4,11/4是23/4)
(11/4=11÷4=23/4)
(4)你认为哪一种方法化成带分数快速一些呢?
因此在实际运用中就可以用分子除以分母。
11/4=11÷4(=2……3)=23/4(商作为带分数的整数部分,余数作为分子,分母不变)
说说把假分数转化成整数或带分数的方法。
分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。
3、完成练一练。
独立完成练习。
汇报方法,说说是怎么想的?
哪些假分数能化成整数,哪些假分数要化成带分数?
三、巩固练习
1、完成练习九第3题。
独立完成练习,汇报方法,集体核对。
2、完成第2题。
读题,理解题意。
尝试练习,说说你是怎样想到的?怎样改写?
如果看图,你能直接用带分数表示吗?你是怎样看的?
3、完成第4题。
关键要看清什么?(把“1”平均分成了几份)
怎样找比较快?说说你的方法。
4、完成第5题。
独立完成填空。
把不是0的整数化成假分数时,怎样化?(用整数与分母相乘的积作分子)
5、完成第6题。
独立完成。
汇报方法,说说想法。
还有其它的比较方法吗?哪一种方法比较快?
四、课堂小结
今天学习了什么内容?你又有了什么新的'收获?8/11能化成带分数吗?带分数是假分数的另一种表现形式。
真分数和假分数的教案篇7
教学内容:
54页例3及做一做,练习十三第4~10题
教学目标:
1.知识与技能:理解带分数的意义,能正确地读写带分数。使学生掌握假分数化成整数或带分数的方法,能正确地把假分数化成整数或带分数。
2.过程与方法:经历把假分数化成整数或带分数的方法过程,培养学生独立解决问题的能力。
3.情感态度价值观:培养学生团结合作的意识,养成良好的学习习惯。
重点难点:
假分数化成整数或带分数。
教学准备:
课件
教学过程:
一、复习导入
1.判断下面各数哪些是真分数,哪些是假分数。
2.观察以上的假分数,假分数可以分为几类?
3.揭示课题:假分数又可以改写成怎样的数呢?这节课我们来学习把假分数化成整数或带分数。(板书:假分数化成整数或带分数)
二、新课讲授
1.教学带分数的意义及读写方法。
(1)一个同学在吃橙子时说我吃了一个半。怎样用分数表示?
得到:一个半是1+ 的和,也可以写成1 。板书:1
(2)观察1 ,它是由哪两部分组成的?
板书
(3)提问:什么是带分数?
(板书:由整数和真分数合成的数叫做带分数)
(4)带分数的读法。
1 读作:一又二分之??
1 读作:一又四分之三
小结:带分数都是由整数部分和分数部分组成的,带分数都比1大。
2.教学例3:出示题目
(1)把假分数化成整数。
如何化简: =33=1 =84=2
你是怎样得到这两个结果的?
(2)把假分数化成带分数。
提问: 的分子不是分母的倍数,这种情况怎样转化?
提问: 化成带分数,怎样化简?
(3)小结:假分数化成整数或带分数的方法是什么?
①分子是分母的倍数时,化成整数,用分子除以分母,商是整数。
②分子不是分母的倍数时,化成带分数,用分子除以分母,商是带分数的整数部分,余数部分是分数部分的分子,分母不变。
三、巩固练习
1.做一做第2题:独立计算,集体订正。
2.练习十三的第4~8题。
3.作业:练习十三9题,选作10题。
四、课堂小结
今天我们学习了什么,你又有什么收获?
板书设计:
把假分数化成整数和带分数
由整数和真分数合成的数叫做带分数
=33=1 =84=2
=65=1
真分数和假分数的教案篇8
教学目标
1.认识真分数和假分数,掌握它们的特征.
2.学会把分子是分母倍数的分数化成整数.
教学重点
理解真分数、假分数的概念和特征.
教学难点
理解假分数的两种实际意义.
教学步骤
一、铺垫孕伏.
1. 表示的意义是什么?
2.说出 的分数单位及有几个这样的分数单位.
二、探究新知.
我们理解了分数的意义,知道了分数也有大小之分,今天我们继续学习有关分数的知识.
(板书:真分数和假分数)
(一)教学例1:用分数表示每个图形的阴影部分.
1.学生分组讨论:这三个分数有什么特点?
(板书:这三个分数的分子比分母小,这三个分数比“1”小)
2.教师明确:我们把这样的分数就叫做真分数.
3.交流总结:分子比分母小的分数叫真分数,真分数小于1.
4.学生举例:说出几个真分数.
(二)教学例2:用分数表示每个图形的阴影部分.
1.教师提问:这三个数也是分数,观察这些分数的分子与分母你发现了什么?
(板书:分子比分母大或分子和分母相等)
教师明确:分子比分母大或分子和分母相等的分数叫假分数,假分数等于1或大于1.
2.学生举例:说出几个假分数.
(三)反馈练习.
1.下面的分数哪些是真分数,哪些是假分数?
2.归纳总结:分数可分为哪两类?是根据什么划分的?
(四)教学例3.
1.导语:有些假分数的分子恰好是分母的倍数,请同学们从例2的三个分数中找出分子是分母倍数的假分数.
2.出示例3:把 化成整数.
(1)根据分数的意义, 是3个 ,正好是一个圆,所以 ;
根据分数与除法的关系, =3÷3=1,所以 化成整数是1.
(2)根据分数的意义, 是8个 ,正好是两个圆,所以 =2;
根据分数与除法的关系, =8÷4=2,所以 =2
3、练习:把下面的假分数化成整数并说说是怎样化的.
三、课堂小结.
通过这节课的学习你懂得了什么?
四、随堂练习.
1.分数可分为哪几类?是怎样划分的?
2.读下面的分数,判断哪些是真分数,哪些是假分数.
3.用真分数或假分数表示图中阴影部分.
4.指出下表中哪些是真分数,哪些是假分数.再指出哪些假分数小于1,哪些假分数大于1.
思考:分母是2、3、4、5的真分数分别有几个?真分数的个数与它的分母有什么关系?分母是6的真分数有几个?分母是10的呢?
五、布置作业.
把下面的假分数化成真分数.
六、板书设计.
真分数和假分数
例1.观察下面每个图形所表示的分数,比较每个分数中分子和分母的大小.
分子比分母小的分数叫做真分数.真分数小于1.
例2.观察下面每组图形所表示的分数,比较每个分数中分子和分母的大小.
分子比分母大或者分子和分母相等的分数,叫做假分数.假分数大于1或者等于1.
例3.把 化成整数
真分数和假分数的教案8篇相关文章: