小学和倍问题教案8篇

时间:
Animai
分享
下载本文

教案的语言表达应清晰明了,以确保学生能够理解和参与到教学活动中,教师需要关注教学目标的清晰度和明确性,以确保教案的有效性,以下是公文溜溜小编精心为您推荐的小学和倍问题教案8篇,供大家参考。

小学和倍问题教案8篇

小学和倍问题教案篇1

一、活动目标

1、提高学生的安全意识,知道在水边玩耍会发生的危险,学习有关溺水安全的知识。

2、引导学生了解溺水安全内容,了解落水自救的常识,切勿亲自下水做到基本的安全防护意识。

3、引导学生正确认识身边不遵守你睡安全的不良习惯现象,提高学生对生活中的危险行有基本的辨别、判断能力。

二、活动准备

1、安全教育课件《防溺水》。

2、泳池、河塘、海边游泳图片。

3、安全教育相关视频。

三、活动过程

1、教师通过谈话导入,引起学生对本次活动主题的预知感受,通过热和流汗,找凉快的方法,学生在举例时便带入了本次活动《防溺水》游泳、洗澡等关键词。

教师:小朋友们,昨天下午我们在课外活动的时候,小朋友们一个个都热得呼哧呼哧的,汗水直流,有的小朋友衣服头发都打湿了,夏天马上就要到了!在很热的时候我们有什么方法能马上凉快下来呢?

教师引导学生回忆夏天解暑的相关措施方法:吃冰激凌、冷饮、西瓜、吹空调等等,教师注意引导学生说出游泳、洗澡等词语。

2、教师出示教学课件《防溺水》,进入安全中心,观看小朋友解暑凉快的措施方法。

(1)刚刚小朋友的回答都非常的好,这些方法都可以让我们凉快起来,但是很多小朋友都很喜欢在夏天的时候去游泳、爸爸妈妈带着他们一起冲个冷水澡,小朋友你们在夏天很热的时候喜欢游泳吗?

(2)你们会不会游泳呢?游泳的时候是什么感觉?游泳的时候你会带些什么?

(3)看看图中的小朋友他游泳的时候是怎样做的,你们觉得他做的对吗?我们小朋友可不可以自己去泳池、海边、河塘游泳呢?会发生什么事情?

在夏天游泳是让自己凉快的最佳方法!很多小朋友在爸爸妈妈的带领下到泳池或者海边游泳,他们会穿着泳衣、带着泳帽、还会带上游泳圈。

带游泳圈是为了防止溺水做的安全措施!小朋友是不可以自己去泳池游泳、河边下河洗澡的,如果没有大人的陪同,很容发生溺水的危险!会被水淹死,失去生命!

3、教师出示安全课件,进入安全钥匙环节,教师引导学生观看溺水安全的视频动画,引导学生回答相关问题,引导学生深入了解溺水安全相关知识。

(1)看看图中的小朋友,她在什么地方玩耍?后来发生了什么事情?

两个小朋友贪玩自己跑到河边去玩,一个在河边捉小鱼、一个小朋友正在水里游泳,而身边没有大人的陪同!然而,危险就发生了,捉鱼的小朋友不小心溺水,游泳的小朋友也被水给冲走了!

(2)欢欢很想去游泳,但欢欢是怎么做的呢?你们觉得他这样对的吗?

欢欢很想游泳,但是爸爸妈妈都告诉欢欢,小孩不能一个人在水边玩耍、在水里游泳!欢欢的爸爸在周末时就带欢欢到正规的游泳池里游泳解暑,游泳池里很安全,欢欢带着游泳圈,爸爸在一边教欢欢游泳和保护欢欢,这样做很对,欢欢不会发生溺水的危险!

4、活动小结:教师引导学生了解游泳还需要注意,在泳池游泳时不离开家人的视线、不在泳池场里乱跑、泳池边玩水嬉戏,池边很湿很滑,容易摔跤和掉进泳池,不注意这些安全,也会发生溺水的危险!

四、活动延伸

1、教师出示教学课件,进入拓展安全温馨提示环节,根据画面提示,引导学生说说本次活动的主要内容和重点。

2、教师根据活动延伸温馨提示环节:如果看到其他小朋友落水,我们该怎么办?能不能自己下水去救他们?

小学生自身能力有限,还不具备下水救人的条件,盲目下水自己也可能会发生溺水危险。如果有小朋友溺水,可以呼叫身边大人,或者拨打110报警。

小学和倍问题教案篇2

?教学目标】

1.使学生加深对百分数的认识,能理解发芽率、出粉率、合格率等这些百分率的含义。

2.能用求一个数是另一个数的几分之几的方法解答求一个数是另一个数的百分之几的的百分之几的应用题,解决生活中一些简单的实际问题。

3.培养学生的知识迁移能力和数学的应用意识。

?重点难点】

1.解答求一个数是另一个数的百分之几的的百分之几的应用题。

2.对一些百分率的理解。

?教具准备】

小黑板、口算卡片。

?参考的有关数据】

稻谷出米率约72% 小麦出粉率约85% 棉子出油率约14%花生仁出油率约40% 油菜子出油率约38% 芝麻出油率约45% 蓖麻子出油率约45%

?教学过程】

第1课时

活动(一)创设情境,提出问题

1.口算比赛:(时间:1分钟)

5/6―1/2 3/10×2/9 1―1/4 4/5÷1/5 4/5÷4/3

5/8+3/4 7/12×4/7 7/8+1/4 1/5+1/3 3/4÷5

想一想,根据自己的口算情况,你能提出什么数学问题?(做对的题数占总题数的几分之几?做错的题数占总题数的几分之几?)

2.学生根据自己的口算情况口答“做对的题数占总题数的几分之几?做错的题数占总题数的几分之几?”

3.提出问题:能否将“做对的题数占总题数的几分之几”的分数应用题改成一道百分数应用题呢?

(校对并让学生说说自己的口算情况,错题数占总题数的百分之几”)

活动(二)相互合作,探究问题

初步感知

1.学生尝试解答各自的“做对的题数占总题数的百分之几”和“做错的题数占总题数的百分之几”的问题。

2.小结:“求一个数是另一个数的百分之几的百分数应用题”与“求一个数是另一个数的几分之几的分数应用题”解法相同,关键是找准单位“1”,所不同的是,“求一个数是另一个数的百分之几的百分数应用题”计算的结果要化成百分数。

共同探讨

1.师:百分数在日常生活、工作中应用很广泛,如前面说到的你们在口算比赛中,各自“做对的题数占总题数的百分之几”这是你在这次口算比赛中的正确率,“做错的题数占总题数的百分之几”就是错误率。像这些正确率、错误率等我们通常称作“百分率”。你能举一些我们日常生活中的百分率的例子吗?

2.学生举一些日常生活中的百分率的例子,举例的同时要让学生说说他所举百分率的意义。

板书学生所举的百分率及其含义。如:

合格的产品数 发芽的个数

产品的合格率= ────────×100% 发芽率= ───────×100%

产品总数 种子的总数

3.尝试解答例题:

(1)出示课本例1和例2的条件:

例1六年级有学生160人,已达到《国家体育锻炼标准》的有120人, ?

例2某县种子推广站,用300粒玉米种子作发芽实验,结果发芽的种子有288粒。 ?

(2)完成第113页的“做一做”

活动(三)运用知识,解决问题

1.口答:

(1)2是5的百分之几?5是2的百分之几?

(2)用 1000千克花生仁榨出花生油380千克,说出求花生仁出油率的公式,并算出花生仁的出油率。

2.判断:

(1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率是105%。

(2)六年级共98名学生,今天全部到校,六年级今天的学生出勤率是98%。

(3)25克盐放入100克水中,盐水的含盐率是25%。

3.课堂作业:

1.我国鸟类种数繁多,约有1166种。全世界鸟类约有8590种。 ?

2、根据我班同学的情况,先编一道百分数应用题,在小组内交流,然后解答。

活动(四)全课总结

1.学生谈谈学习本课后有什么收获,说说解答一个数是另一个数的百分之几的百分数应用题的关键是什么?方法是怎样的?这类应用题与求一个数是另一个数的几分之几的分数应用题有什么关系?

2.学生谈谈今天所学的知识在我们的日常生活中有什么用?

活动(五)补充练习

1.判断题。

①五年级98个同学,全部达到体育锻炼标准,达标率为98%。

②今天一车间102个工人全部上班,今天的出勤率是102%。

③甲工人加工103个零件,有100个合格,合格率是100%。

2.应用题。

①六年级一班有学生50人,今天出席48人.求六年级一班今天的出勤率。

②在一次数学测验中,六年级一班同学一共做了400个题,结果有错误的题16个,求错误率。

3.作业:结合练习二十九第6题进行课外调查。

?教学反思】

创造性地使用了教材,使乏味的数学变得生动,鲜活,有意义。。注重了学习方式的多样化,密切了数学与生活的联系。学习效果很好。

小学和倍问题教案篇3

设计说明

本节课是本单元的最后一节新课,教学目的是让学生应用乘法口诀解决实际问题。针对本节课的教学内容和特点,我特做如下设计:

1、为新知做好知识铺垫。

复习能帮助学生沟通新旧知识的联系,分散难点,从而顺利地完成学习任务,教学中应根据教学内容的特点和学生原有的认知结构适时、适度地安排复习,在“短、精、新”上下功夫,达到“未成曲调先有情”的教学效果,使后面的“好戏”顺理成章。在课前复习环节,我精心设计了两道复习题目,旨在唤起学生对前面知识的回忆,为新知的学习打下知识基础。我首先出示一组加法与乘法的对比练习,让学生感受到加法与乘法的意义有所不同;然后设计一道与新课密切相关的题目,既能复习乘法和加法的意义,又能为新课中画图解决问题做好知识铺垫。

2、在自主探究中经历学习过程。

?数学课程标准》强调:让学生经历数学学习的过程与获得数学结论同样重要。为此,在教学过程中让学生经历自主探究、思考、操作等活动对于发展学生的数学能力有着重要的作用。在探究新知的过程中,首先让学生找出两道例题的异同,并动笔尝试计算。然后设计了“两道题目中都有4和5,为什么解答方法不同”的问题,引发学生思考,通过分组讨论、设计摆学具的方法,将两道题目的条件和问题表示出来,使具体问题抽象为数学模型。接着让学生说出两幅图的意思,突出理解乘法和加法的意义,使学生有理有据地选择计算方法。这样的设计能让学生经历学习的过程,加深学生对知识的理解。

课前准备

教师准备ppt课件学情检测卡

学生准备正方形纸板

教学过程

⊙复习导入

1、直接写得数。

5+4=6+6+6=3+4=

5×4=6×3=3×4=

(引导学生说出每组算式的相同点和不同点)

2、看图列式计算。

■■■■■■■■■■■■

■■■■■■■■■

■■■■■■

师:这节课我们就来解决关于乘法和加法的一些实际问题,请同学们认真读题、审题,理清题中的数量关系。(板书课题:解决问题)

设计意图:通过对比复习乘法和加法计算题,为本节课做好知识上的铺垫,使学生更容易接受本节课的知识。

⊙探究新知

1、引导学生读题,对比两道题目的相同点和不同点。

例7

比较下面两道题,选择合适的方法解答。

(1)有4排桌子,每排5张,一共有多少张?

(2)有2排桌子,一排5张,另一排4张,一共有多少张?

预设

生1:两道题目的数量相同,所求的问题相同。

生2:(1)题中的4表示4排,5表示每排有5张桌子;(2)题中的4和5都表示桌子的张数。

2、自主解题。

(1)提问:根据刚才分析的数量关系,同学们打算怎样解决这两个问题?

(2)学生分组讨论、汇报。

预设

生1:(1)题是把4个5加起来,可以列乘法算式。

5×4=20(张)

生2:(2)题是把4和5合起来,用加法计算。

5+4=9(张)

(3)讨论:两道题目中都有4和5,为什么解答方法不同呢?

(学生分组讨论,利用学具摆一摆,表示出两道题目的条件和问题,明确原因)

小学和倍问题教案篇4

教学内容:课本应用题例5及练一练

教学目标:

1、通过教学,引导学生认识相遇问题(求相遇路程)的特征,理解数量关系,并能解答相遇问题应用题。

2、通过组织学生分组讨论,培养学生合作与交流的意识。

3、结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。

教学重点:相遇问题的特征和解题方法。

教学难点:相遇问题的特征和解题方法。

教学用具:多媒体课件一套

教学过程:

一、激趣引入,复习旧知

1、根据已知条件解答问题。

电脑演示一位学生边走边唱上学的情景。

我是小小读书郎,蹦蹦跳跳上学忙。每分要走70米,4分才能到学堂。

学生提出问题:你知道我家到学校有多远吗?

2、学生口答列式:704=280(米)。

复习速度、时间、路程三者之的数量关系。(板书:速度时间路程)

二、揭示特征,化解难点

1、想想,说说

电脑演示两个学生同时上学在校门口相遇的情景,引导学生初步认识相遇问题的特征。

①两个学生是怎么上学的?(板书:同时相对相遇)

②相遇的意思懂吗?请两个学生上台合作表演一下。

2、填填,议议

①介绍人物及行走的速度和时间。

小明每分走70米,小红每分走60米,有一天,他们约好,从家里同时出发,相对而行3分钟后恰好在校门口相遇。

②分组合作,完成以下表格:

比一比,看哪个组填得又对又快?

③分组汇报表中所填数据。

④采取教师提问,学生回答;学生提问,教师回答;学生提问,学生回答的式,分析表中数据,加深对相遇问题特征的理解,并初步感知相遇问题数量间的关系,渗透两种解法。

130米是什么?表示两人每分所走的路程和即速度和(板书:速度和)

260米是怎么得来的?渗透两种方法即:140+120,1302。同时说2分是相遇时间。(板书:相遇时间)

390米是怎么得到的?强调两种方法,即把各自的路程相加210+180;用速度和乘相遇时间(1303)。

390米表示什么?两人3分钟所走路程的和,实际上就是两家之间的离。

三、解答例题,理清思路

1、尝试例5(稍做改动)。弄清数量关系,理清解题思路,掌握两种解法。

①将上题中同时行3分钟改成同时行4分钟,其余条件不变,仍然求两家相距多远?学生读题后尝试练习。

②评讲板演,理清解题思路,概括两种方法。

先求两人4分钟各走多少米。

⑴分步列式解答704=280(米)604=240(米)280+240=520(米)

⑵综合列式解答704+604

=280+240

=520(米)

先求两人1分钟一共走多少米。

⑶分步列式解答70+60=130(米)1304=520(米)

⑷综合列式解答(70+60)4

=1304

=520(米)

2、质疑小结,揭示课题。

①想一想,这两种解法有什么联系?

②概括相遇问题的特征和解题方法。

③揭示课题。

这两种解法都是利用速度时间=路程这一数量关系式。不过,第一种方法是用各自的速度乘各自的时间,得出各自的路程,然后相加求和;第二种方法用速度和乘相同的时间。象这样两人分别从两家同时出发,相对而行,结果遇的问题,就是我们今天研究的'主要内容相遇问题(板书:相遇问题),决这样的问题可以用两种方法。

四、深化理解,应用拓展

1、基本练习。

用两种方法完成课本第37页上的练一练,并说一说,是怎样列式的?先求什?再求什么?

2、变式练习。

电脑演示小明和小芳放学的情景。

①认识相背而行(板书:相背)

②小明每分走70米,小芳每分走60米,1分钟后两人相距多远?2分呢?4分呢?结果怎样?

揭示相背而行和相对而行求总路程时的解题思路是一样的。

3、拓展练习。

结合生活实例,培养学生收集信息、处理信息和解决实际问题的能力。

电脑演示:张教授、李经理分别从湖州、上海去杭州参加经贸会,临行前一段对话情景。

对话实录如下:

张教授:喂,李经理吗?我已坐在湖州去杭州的大巴上。

李经理:知道了,张教授,你车子的速度怎样啊?

张教授:大概每小时行70千米吧!

李经理:这样吧!我把车速控制在每小时行100千米,过2小时,我们就可在杭州见面啦!

张教授:杭州见!一路平安!

李经理:好,一路平安,杭州见!

分组合作,进行探究。

①请同学们认真听,仔细看,从对话中能捕捉到哪些信息?

②根据刚才捕捉的信息,能解决哪些问题?比一比,看哪个组提出的问题多?

③汇报提出的问题,交流解决的方法。

④生活中的行程问题,是不是一定都是这样?有没有别的情况?

4、全课总结。

今天这节课主要学习了什么内容?你获得什么本领?

同学们,只要你们留心观察,善于思考,就会发现许多数学问题,刚才大家出的问题,都有一定价值。有些问题现在我们可以解决了,有些问题还需要续学习,深入研究,将来去解决。

小学和倍问题教案篇5

教学内容:人教版小学数学第九册《相遇问题》第58准备题、例5及做一做,并完成练习十三1-3题。

教学目的:

1、使学生理解相遇问题的意义及特点。

2、学会分析相遇问题的数量关系,掌握相遇求路程的应用题的解答方法。

3、明白具体情况具体分析的道理,培养学生初步的辨证唯物主义观点。

教学重点:理解相遇问题的数量关系,建立解题思路,掌握解题方法。 教学难点:理解相遇问题中速度和、相遇时间和总路程之间的关系。

教学准备:计算机辅助教学软件一套。

教学过程:

一、动画引入,揭示课题 1、通过电脑演示了解相遇问题中两个物体的运动情况。

电脑演示一声枪响后,两人相向而行,相遇前停下来。 提问:一声枪响后,你看到了什么?注意他们的出发时间和运动方向是怎样的?(板书:同时出发、相向而行)如果他们继续走下去,结果可能会怎样?(相遇、不相遇就停下来、相遇以后相交而过)结果究竟怎么样呢?请同学们继续观察。 电脑演示两人相遇。(板书:结果相遇) 谁能完整的说说他们是怎样运动的? [评析:运用多媒体所具有的声、光、色、形的特点,创设动态情境,抓住"相遇问题"的关键,让学生形象地理解"同时出发"、"相向而行" 、"结果相遇"这几个相遇问题的几个基本要素,为例题教学扫除了文字障碍。并且通过生动形象卡通画导入新课,大大激发了学生学习的兴趣。]

2、揭示课题:

像这样,两人或两个物体同时从两地出发,相向而行,最后相遇,我们称这样的问题为相遇问题。(板书课题:相遇问题)

过去我们学过一个物体运动的行程问题。你们还记得一个物体运动时,速度、时 间、路程三者之间有什么样的关系?(板书:速度×时间=路程)

今天研究的相遇问题中,运动物体变成了两个,他们的速度、时间和路程三者之间又有什么样的关系呢?今天咱们就一块儿来研究这个问题。 二、引导探究,教学新知

(一)教学准备题。

1、电脑配音显示准备题。 我是张华,我的速度是每分60米。我是李诚,我的速度是每分70米。张华家距李诚家390米,他俩同时从家里出发,向对方走去。下面是他们两人走的时间和路程的变化情况表。请同学们先看动画,再完成下表,然后讨论以下两个问题。 走的时间 张华走 的路程 李诚走 的路程 两人所走 的路程和 现在两人 的距离 1分 60米 79米 2分 3分 讨论:

①出发3分后,两人之间的距离变成了多少?说明了什么?

②相遇时,两人所走路程的和与两家的距离有什么关系?

2、观察填表,讨论分析。

(1)学生填写表格,并讨论屏幕上的两个问题。

(2)全班校对答案。提问:2分时两人所走路程的和260米你是怎样计算的?(①120+140=260米②30×2=260米)

(3)学生回答讨论的两个问题。 小结:刚才我们通过自己观察、填写、讨论,发现了两个物体同时出发、相向而行,相遇时,两人所走路程的和恰好就是两家的距离。下面我们就利用这个规律自己来解决一些实际问题。

[评析:在准备题教学中,教师放手让学生自己观察、填写、讨论,不但使学生深刻理解了两人所走的路程与两家距离的关系,为研究解题方法作了充分的准备,而且充分体现了学生的自主学习精神。]

(二)教学例5。

1、电脑出示例5及线段图:小强和小丽同时从自己家里走向学校。小强每分走65米,小丽每分走70米,经过4分。两人在校门口相遇。他们两家相距多少米? 2、学生尝试解答,两生上台板书。 65×4 + 70×4 (65 + 70)×4 =260 + 280 =135×4 =540(米) =540(米) 3、学生自己分析解题思路:

①请用第一种方法的同学说说你是怎样想的? 提问:题中只有一个4,为什么算式中出现了两个4?

师:经过4分两人相遇,说明相遇时两人都行了4分,因此我们也可以把这个时间称为相遇时间。相遇时间在这种解法中要用到两次。

②请用第二种方法的同学说说你的解题思路又是什么?

[评析:在学生已掌握路程、速度、时间三者间关系的基础上,联系学生已有的生活实际,通过自己探索,寻求出解答求相遇路程的思路,从而提高了学生分析问题和决问题的能力。]

4、通过电脑演示强化两种解法的解题思路。

通过刚才的分析我们知道,相遇问题中求路程有几种解法?请看屏幕。

电脑演示:一种是先求出小强走的路程和小丽走的路程,再加起来就得到两人所走路程的和,也就是两家的距离;另一种解法是先把小强每分所走的路程和小丽每分所走的路程加起来,得到每分两人所走路程的和,因为经过4分相遇,再乘以相遇时间4,就得到了4分所走路程的和,也就是两家的距离。

[评析:通过大屏幕色彩鲜艳的线段闪铄演示,加深了学生对第一种方法的理解;"速度和"的概念是第二种解法的'难点,通过将两人每分各行的路程"移动、合并",形象地揭示了"速度和"的内涵。教者灵活地利用多媒体图象的移动、合并、返回的运动特点,揭示"速度和、相遇时间、距离"之间的关系,加深了学生对第二种方法的理解。]

5、总结数量关系式: 请同学们观察这两种解法,你更喜欢哪一种?根据这种解法你发现在相遇问题中,速度、时间、路程三者之间有什么关系?(板书:和、相遇) 有了这个数量关系式,你知道相遇问题中路程需要知道哪些条件?

6、学生看书质疑。

三、巩固练习,深化提高

1、根据题意连线。

两列火车从两地同时相向开出。甲车每小时行44千米,乙车每小时行52千米,经过2.5小时两车相遇。

44×2.5 两人的速度和 52×2.5 两地的距离 44 + 52 相遇时甲车所行的路程 (44 + 52)×2.5

相遇时乙车所行的路程 44×2.5 +52×2.5 2、用两种方法解答。(59页做一做第1题)

3、只列式不计算。(练习十三1、2题) 学生独立完成,集体订正。反馈中引导学生把第2题与前面的习题比较,明确虽然两车运动方向、出发地点等情况与前面习题不同,但它们都是求两个物体所行路程的和,都可以用速度和×时间=路程得到。

[评析:练习的设计由浅入深,有坡度有层次,目的性强。先通过连线题强化相遇问题中的各个概念;然后解决与相遇问题类似的应用题,实现知识、技能和方法的迁移;最后解决有变化的相遇问题,突破固定的思维框架。重点突出,一题一得,既减轻了学生的过重负担,又提高了教学效益。] 四、闯关游戏,拓思创新: 电脑演示闯关画面,配音出示游戏规则。

1、第一关:猫和老鼠从两地相向而行,猫每分跑50米,老鼠每分跑6米。跑了2分,还相距120米,求两地相距多少米? 提问:用速度和乘以时间得到了路程,为什么还要加120?

2、第二关:甲、乙两辆汽车从两地相对行驶。甲车每小时行75千米,乙车每小时行69千米。甲车开出后1小时,乙车才开出,再过2小时两车相遇。两地相距多少千米?

3、第三关:甲乙两人从两地相向而行,甲每分行40米,乙每分行45米。相遇以后相交而过,走了4分,两人相距90米,求两地相距多少米? 提问:为什么每一种算法都要减90?

4、小结:今后同学们在解答两个物体运动的行程问题时,首先要弄清他们运动的时间、方向和结果,再灵活运用相遇问题的思路进行解答。

[评析:首先,通过游戏,激发了学生的学习兴趣,使学生在乐中学习;其次,通过变式练习,让学生灵活应用所学知识解答问题,让学生明白具体情况具体分析的道理,培养学生初步的辨证唯物主义观点。]

小学和倍问题教案篇6

教学目标:

1、掌握求比一个数多百分之几的数是多少的问题。通过对比,使学生沟通分数应用题和百分数应用题的联系和区别

2、进一步提高学生分析、比较、解答应用题的能力,会求比一个数少百分之的数是多少的问题。

3、进一步体验百分数与实际生活的紧密联系。

教学重点和难点

教学重点:

掌握比一个数多(少)百分之几的应用题的数量关系和解题思路。

教学难点:

正确、灵活地解答这类百分数应用题的实际问题。

教学过程:

一、创设情景,生成问题

老师很高兴和咱们班的同学一起学习关于百分数应用的问题。你们想学么?生说想。好我们先来检验一下你们前面学过的知识。

教师引导学生看复习题(1)学校图书室原有图书1400册,今年图书册数增加了168册,现在图书室有多少册图书?

要求学生口答 ,学生纷纷举手回答。教师肯定学生的表现,接着说如果老师将这道题的条件变为“今年图书册数增加了12%”,应该怎样分析解答呢?同学们想知道么?这节课我们就来研究它。。

板书课题:比较复杂的百分数应用题

(设计意图:通过谈话的方式复习前面的知识,引入所要学习的新知识,激情的导入,激发了学生探求新知识的热情。学生跃跃 欲试急于去学习。 )

二、探索交流,解决问题。

出示课件

学校图书室原有图书1400册,今年图书册数增加了12%。现在图书室有多少册图书?

(1)学生默读题。

(2)教师引导学生观察比较例3与复习题有什么异同?(两道题问题相同,条件不同。)条件不同在哪儿?引导学生多说。

(设计意图:让学生通过比较 明白新旧知识的联系,更容易掌握)

(3)引导学生思考增加了12%是什么意思,是把谁看作单位“1”。 使学生明确今年增加的册数相当于原有册数的12%,现在的册数相当于原有册数的1+12%,即112%。 ,然后小组合作探讨解题方法。组长记录讨论结果。

(4)教师巡视指导。参与到学生中间去。

(5)师生共同交流。各小组派代表说说自己的解题思路。

方法1

方法2

(6)教师对学生的进行补充讲解。再让学生板演在黑板上。对学生的做题情况进行评价,适时表扬鼓励。

(7)师生共同总结出两种解答方法。让学生比较一下哪种方法最优。学生纷纷陈述自己的理由。

(8)比较百分数应用题和分数应用题的区别和联系。

相同点:数量关系和解题方法完全相同

不同点:百分数应用题的数量关系用百分数来表示;分数应用题的数量关系用分数来表示。

(设计意图:让学生经过了思考再进行小组合作更有利于学生的自主学习,体现了新的教学理念并且注意了解题策略的多样化,最优化。)

三、巩固应用,内化提高

1、幸福镇去年收粮食300万吨,今年比去年多20%,今年生产粮食多少万吨?

2、.龙泉镇去年有小生2800人,今年比去年减少了0.5%。今年有小学生多少人?

3、思考:如果例3改成:学校图书室现有图书1568册,比原有图书册数增加了12%,图书室原有多少册图书?(这题单位“1”的量不变,要比较的量也不变,例3单位“1”的量是已知量,这题单位“1”的量是未知量。)

(设计意图:巩固应用环节让学生从基本应用、综合应用、思维拓展三个层次进行了练习, 加深了学生对知识的巩固及迁移。达到灵活运用的目的。)

四、回顾整理,反思提升。

今天我们学习了什么知识?解决这类题的关键是什么?

师述:今天我们学习了比一个数多(或少)百分之几是多少的应用题。解决这类题的关键就是要找准单位“1”,然后根据问题列出文字算式来帮助大家列式计算。

百分数应用题和分数应用题的思路和方法是一样的,只不过表示形式不一样而已。

板书设计:

百分数应用题(三)

例3: 方法一: 方法二:

1400+1400×12% 1400×(1+12%)

=1400+168 =1400×112%

=1568 (册) =1568 (册)

答:现在图书室有1568册图书。

小学和倍问题教案篇7

教学过程:

一、积累铺垫

1.引入:刚才的游戏有意思吗?我们再来玩个游戏好吗?(课前游戏:你来比划我来猜)

2.要求:刚刚我们根据比划来猜测是什么事物,现在请同学们在纸上画出题目的意思。

3.出示第一关:中山路小学原有一个花圃是长方形,长4米,宽3米。校园扩建时,长增加了2米。(1)学生画图(2)对比交流

4.从图中你能求出什么?

二、初步感知

1.出示第二关:中山路小学原来操场是一个长方形,长40米。在扩建校园时,长增加了20米,这样操场面积就增加了600平方米。原来操场面积是多少平方米?。

2.审题激需:你能想个办法让大部分同学都能理解题意顺利闯关呢?(画图)

3.看谁能把题目中的条件和问题都在图中表示出来?(1)学生画图, (2)对比交流:

4.现在图有了,你能根据图来求出原来操场的面积吗?

(1)学生尝试,教师巡视。(2)讨论交流:

5.小结:从开始审题我们觉得有点困难,至现在大部分同学都能做出来,你有什么感受?(画图是解决问题的好办法,画图能帮助我们思考……)

三、再次体验

1.出示第三关:中山路小学原来有一个宽30米的前操场。因为要造“牡丹公寓”,宽减少了10米,这样前操场面积就减少了400平方米。现在前操场的面积是多少平方米?

2.审题后问:长方形操场是怎样变化的?(宽减少)你能把宽减少在图上表示出来吗?

3.学生画图,尝试解答后交流:把题意表示清楚了吗?能指着图说一说自己是怎么想的吗?(可能会有几种方法,重点指出宽减少了,长不变,减少的长方形的长就是现在长方形的长。)

4.小结揭题:我们顺利闯过了第三关,你能谈谈画图对我们解决问题有什么帮助吗?(清楚地找到数量之间的关系)这就是我们今天学习的“解决问题的策略”之一画图(板书)。

四、深入体验

(一)第四关:

1.引入:应用画图的策略,我们来闯第四关。

2.分层出示:

(1)中山路小学原来有一个长方形操场,长40米,宽30米。扩建校园时,操场长增加了20米。这个操场面积增加了多少平方米?(学生口答,再出图列式)

(2)中山路小学原来有一个长方形操场,长40米,宽30米。扩建校园时,操场宽增加了15米。这个操场面积增加了多少平方米?(学生口答,再出图列式)

(3)中山路小学原来有一个长方形操场,长40米,宽30米。扩建校园时,操场长增加了20米,宽增加了15米。这个操场面积增加了多少平方米?

学生猜测。先独立画图,再讨论验证。(得出不是增加1200平方米,应该大于1200平方米)

到底增加了多少?学生解答后交流。(交流“整体”和“分块”两种思路)

3.反思小结:从用经验猜测,到画图验证,最后到解决问题,你有什么启发吗?

(二)第五关:

1.引入:第四关我们都闯过了,下面我们要挑战——第五关!

2.出示第五关:中山路小学原来有一个长方形操场。如果这个操场的长增加20米,或者宽增加15米,面积都比原来增加600平方米。你知道原来操场的面积是多少平方米吗?

(1)审题后问:与第四关有什么区别?(一个是“同时”,一个是“或者”)

(2)学生画图解答后交流:(让学生指了图来说思路。重点交流长增加出来的长方形的长就是原来长方形的宽;宽增加出来的长方形的宽就是原来长方形的长)

五、全课总结

今天学习了“解决问题的策略”,你有什么收获?

小学和倍问题教案篇8

教学目标

1.使学生掌握求相遇时间应用题的结构特点,并能正确解答求相遇时间的应用题.

2.提高学生分析问题,解决问题的能力.

3.培养学生大胆尝试,勇于探索的精神.

教学重点

1.找到与求路程应用题的内在联系.

2.正确分析解答求相遇时间的应用题.

教学难点

掌握求相遇时间应用题的解题思路.

教学过程

一、复习引入

(一)出示复习题

小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米.经过3分钟两人相遇.两地相距多远?

1.画图,列式解答.

2.订正答案

3.小组讨论:试着改编一道求相遇时间应用题.

二、探究新知

例4.两地相距270米.小东和小英同时从两地出发,相对走来.小东每分走50米,小英每分走40米,经过几分两人相遇?

1.讨论:复习题的线段图该怎样改一改.并试着画一画.

2.联系复习题的解法,尝试解答

3.订正思路

想法一:两人相遇时,所走的路程是270米.几分走270米,就是几分相遇.

270(50+40).

想法二:根据复习题速度和相遇时间=路程,依据乘法的因积关系可得:

相遇时间=路程速度和.

三、反馈调节

两人同时从相距6400米的两地相向而行.一个人骑摩托车每分行600米,另一人骑自行车每分行200米,经过几分两人相遇?

1.学生独立分析解答.

2.订正答案.

3.质疑:对于求相遇时间应用题还有什么问题?

4.教师提问

(1)要求相遇时间题目中需告诉我们哪些条件?

(2)例4与复习题之间有什么联系?又有什么区别?

四、巩固练习

(一)从北京到沈阳的.铁路长738千米.两列火车从两地同时相对开出,北京开出的火车,平均每小时行59千米;沈阳开出的火车,平均每小时行64千米.两车开出后几小时相遇?

(二)两艘军舰同时从相距948千米的两个港口对开.一艘军舰每小时行38千米.另一艘军舰每小时行41千米.经过几小时两艘军舰可以相遇?

教师提问:怎样验证结果是否正确?

(三)两个工程队合开一条670米的隧道,同时各从一端开凿.第一队每天开12.6米,

第二队每天开14.2米.这个隧道要用多少天才能打通?打通时两队各开凿多少米?

(四)长沙到广州的铁路长726千米.一列货车从长沙开往广州,每小时行69千米.这

列货车开出后开往广州,每小时行69千米.这列货车开出后1小时,一列客车从广州出发开往长沙,每小时行77千米.再过几小时两车相遇?

五、课后小结

我们今天所学的相遇问题与以前学习的行程问题有什么主要联系和区别?通过学习你有什么体会?

小学和倍问题教案8篇相关文章:

纸小学教案优秀8篇

小学一年级健康教案8篇

小学数学四年级下教案8篇

小学语文六年级上册教案通用8篇

小学语文赵州桥教案8篇

小学二年级语文教案模板8篇

小学三年级语文教案模板8篇

小学一年级数学找规律教案8篇

人教版小学语文六年级上册教案8篇

小学生心理健康教育教案模板8篇

小学和倍问题教案8篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
82281