在日常的教学活动中,教案起到非常关键的作用,教案在书写的过程中,老师务必要强调创新教学方法,以下是公文溜溜小编精心为您推荐的初一数学教案7篇,供大家参考。
初一数学教案篇1
教学目标:
1、熟练有理数的乘法运算并能用乘法运算律简化运算。
2、让学生通过观察、思考、探究、讨论,主动地进行学习。
3、培养学生语言表达能力以及与他人沟通、交往能力,使其逐渐热爱数学这门课程。
教学重点和难点
教学重点:正确运用运算律,使运算简化
教学难点:运用运算律,使运算简化
教学过程
一、学前准备
1、下面两组练习,请同学们选择一组计算。并比较它们的结果:
请以小组为单位,相互检查,看计算对了吗?
二、探究新知
1、下面我们以小组为单位,仔细观察上面的式子与结果,把你的发现相互交流交流。
2、怎么样,在有理数运算律中,乘法的交换律,结合律以及分配律还成立吗?
3、归纳、总结
乘法交换律:两个数相乘,交换因数的位置,积相等。
即:ab=ba
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等
即:(ab)c=a(bc)
乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加
即:a(b+c)=ab+bc
三、新知应用
1、例题
用两种方法计算(+-)12
2、看谁算得快,算得准
1)(-7)(-)2)915.
四、课堂小结
怎么样,这节课有什么收获,还有那些问题没有解决?
乘法交换律:两个数相乘,交换因数的位置,积相等。
即:ab=ba
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
即:(ab)c=a(bc)
乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
即:a(b+c)=ab+bc
五、作业布置
初一数学教案篇2
教学目标
(一)教学知识点
1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系。
2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根。
3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
(二)能力训练要求
1、经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神。
2、通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想。
3、通过学生共同观察和讨论,培养大家的合作交流意识。
(三)情感与价值观要求
1、经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性。
2、具有初步的创新精神和实践能力。
教学重点
1、体会方程与函数之间的联系。
2、理解何时方程有两个不等的实根,两个相等的实数和没有实根。
3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标。
教学难点
1、探索方程与函数之间的联系的过程。
2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系。
教学方法
讨论探索法。
教具准备
投影片二张
第一张:(记作§2.8.1a)
第二张:(记作§2.8.1b)
教学过程
Ⅰ。创设问题情境,引入新课
[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系。当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解。
现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题。
通过学生的讨论,使学生更清楚以下事实:
(1)分解因式与整式的乘法是一种互逆关系;
(2)分解因式的结果要以积的形式表示;
(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;
(4)必须分解到每个多项式不能再分解为止。
活动5:应用新知
例题学习:
p166例1、例2(略)
在教师的引导下,学生应用提公因式法共同完成例题。
让学生进一步理解提公因式法进行因式分解。
活动6:课堂练习
1.p167练习;
2、看谁连得准
x2-y2 (x+1)2
9-25 x 2 y(x -y)
x 2+2x+1 (3-5 x)(3+5 x)
xy-y2 (x+y)(x-y)
3、下列哪些变形是因式分解,为什么?
(1)(a+3)(a -3)= a 2-9
(2)a 2-4=( a +2)( a -2)
(3)a 2-b2+1=( a +b)( a -b)+1
(4)2πr+2πr=2π(r+r)
学生自主完成练习。
通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。
活动7:课堂小结
从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?
学生发言。
通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。
活动8:课后作业
课本p170习题的第1、4大题。
学生自主完成
通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。
板书设计(需要一直留在黑板上主板书)
15.4.1提公因式法例题
1、因式分解的定义
2、提公因式法
一、 基本情况分析
1、学生情况分析
这学期我承担七(1)(2)两班的数学教学,这些学生整体基础参差不齐,小学没有养成良好的学习习惯,所以任务艰巨。在小学所学知识的掌握程度上,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,但位数不多。对多数学生来说,简单的基础知识还不能有效掌握,成绩稍差。学生的逻辑推理、逻辑思维能力,计算能力要得到加强,还要提升整体成绩,适时补充课外知识,拓展学生的知识面,抽出一定的时间给强化几何训练,全面提升学生的数学素质。
2、教材分析:
1、第1章有理数:本章主要学习有理数的基本性质及运算。本章重点内容是有理数的概念,性质和运算。本章的难点在于理解有理数的基本性质、运算法则,并将它们应用到解决实际问题和计算中。
2、第2章整式的加减:本章主要是学习单项式和多项式的加减运算。本章重点内容是单项式、多项式、同类项的概念;合并同类项及去括号的法则及整式的加减运算。本章难点在于理解合并同类项和去括号的法则。
3、第3章一元一次方程:本章主要学习一元一次方程的概念、等式的基本性质、一元一次方程的解法及应用。本章重点内容是理解等式的基本性质;掌握解一元一次方程的一般步骤;列方程解决实际问题的基本思路。本章难点在于解一元一次方程,并利用一元一次方程解决简单的实际问题。
4、第4章几何图形初步:本章主要学习线段和角有关的性质。本章的重点是区别直线、射线、线段,角的有关性质和计算;理解互为余角、互为补角的性质及应用。本章的难点在于线段和角的有关计算。
二、 教学目标和要求
(一)知识与技能
1、获得数学中的基本理论、概念、原理和规律等方面的知识,了解并关注这些知识在生产、生活和社会发展中的应用。
2、学会将实践生活中遇到的实际问题转化为数学问题,从而通过数学问题解决实际问题。体验几何定理的探究及其推理过程并学会在实际问题进行应用。
3、初步具有数学研究操作的基本技能,一定的科学探究和实践能力,养成良好的科学思维习惯。
(二)过程与方法
1、采用思考、类比、探究、归纳、得出结论的方法进行教学;
2、发挥学生的主体作用,作好探究性活动;
3、密切联系实际,激发学生的学习的积极性,培养学生的类比、归纳的能力、
(三)情感态度与价值观
1、理解人与自然、社会的密切关系,和谐发展的主义,提高环境保护意识。
2、逐步形成数学的基本观点和科学态度,为确立辩证唯物主义世界观奠定必在的基础。
三、 提高教学质量的主要措施
1、认真研读新课程标准,钻研新教材,根据新课程标准,扩充教材内容,认真上课,批改作业,认真辅导,认真制作考试试试卷,也让学生学会认真学习。
2、兴趣是最好的老师,激发学生的兴趣,给学生介绍数学家、数学史、介绍相应的数学趣题,给出数学课外思考题,激发学生的兴趣。
3、引导学生积极参与知识的构建,营造民主、和谐、平等、自主、探究、合作、交流的氛围,分享快乐的学习课堂,让学生体会学习的快乐,享受学习。
4、运用新课程标准的理念指导教学,积极更新自己脑海中固有的教育理念,不同的教育理念将带来不同的教育效果。
5、培养学生良好的学习习惯,陶行知说:教育就是培养习惯,有助于学生稳步提高学习成绩,发展学生的非智力因素,弥补智力上的不足。
6、加强学生解题速度和准确度的培养训练,在新授课时,凡是能当堂完成的作业,要求学生比速度和准确度,谁先完成谁就先交给老师批改,凡是做的全对的依次获得前十名,以资鼓励。
7、加强个别辅导,加强面批、面改,加强定时作业的训练。并进行作业展览,对作业书写的好又全部正确的贴在学习园地中。
8、积极主动的与其他教师协同配合,认真钻研教材,搞好集体备课。
一、指导思想
全面落实《课程标准》的基本理念。教材以内容的基础性、普及性、发展性为根本出发点;以内容呈现方式的变革促进学生教学学习方式的根本变革;以“容易些、有趣些、鲜活些”作为教材指导思想。
二、教材分析
1、教材注重知识的发生发展过程、学生的认知过程和情感体验过程,引导学生积极探索,使他们经历“观察、试验、比较、归纳、猜想、推理、反思”等数学活动的基本过程。穿插安排了大量的“实验与探索”、“交流与发现”、“挑战自我”等栏目,收集了很多“现实的、有意义的、富有挑战性的”学习教材,为学生更多的进行数学活动和相互交流搭建平台,让他们在主动探究、交流启发的过程中,促进数学思考、扩大和加深对问题的认识。例如,让学生从观察美丽的图案中发现平面图形,思考生活的现象,得到直线、线段的性质等。
2、教材注意体现和渗透数形结合、分类和用字母表示数的数学思想。数轴概念的建立是数形结合思想的重要体现。分类是科学研究和数学中的一种重要的思想和方法。教材通过有理数的分类,不仅加深了学生对有理数的认识,为进一步研究有理数的运算法则做必要的准备,还让学生对分类思想开始有所接触。
3、教材设置了丰富的现实背景,为学生自主探索、合作交流、发现并总结有理数运算的法则搭建了平台。考虑到有理数运算的学习重点是对法则和运算律的理解,为了避免因为分数、小数的运算的复杂性而冲淡学习的主题,教材对有理数的运算,先以整数运算为出发点,然后过渡到含有分数的运算。另外,教材还安排了一些运用有理数及其运算解决实际情况的内容,以使学生进一步体会所学知识与现实世界的联系。
4、教材中的“情境导航”对两张统计图提出了四个问题,分别从观察统计图得到那些信息、统计的作法、统计图的特点和用途、统计图之间的转化等提出了研究的主要问题。教材设计的“资料”栏目是对课文中出现的对学生所不熟悉的名词进行解释,如“荒漠化”“国民生产总值(gdp)”等以使学生理解课本中的名词,拓宽知识面。在例题与习题中,在选配上注意了应用性和开放性,以便引导学生通过数学活动,经历分析问题和解决问题的过程,并能从不同的角度思考问题,能进行合情合理的推理。
5、教材把知识的学习置于具体的情境之中,如利用图形面积的表示行程问题等引出代数式表示和代数式表示的意义;给代数式赋予实际背景、给出代数式的值在实际背景下的解释;通过丰富的例子使学生感受常量和变量,数量之间的相互依存,初步认识函数等。通过提供丰富的、有吸引力的探索活动和现实生活中的问题,使学生初步体会到数学建模的思想。
6、教材安排了一个对于学生富有趣味性、探索性和挑战性的对折报纸的实验,设计了问题串,通过有效的学习活动,对得到的数值进行合理的估算,并对估算结果进行合理的解释。
三、主要任务和要求
1、在探究和认识基本的几何图形的过程中,发展直觉思维,逐步建立初步的空间概念,进一步丰富数学学习的成功体验,激发对几何学习的好奇心、求知欲以及积极参与数学活动、主动与同学合作交流的意识。
2、在学习用数轴的点表示有理数的过程中,感受数形结合思想。在借助数轴理解相反数和绝对值的意义的过程中,发展几何直觉。在相反数、绝对值等概念的探索中,体会归纳、思考、交流、发现等数学活动在解决问题中的作用。
3、通过丰富的数学活动,体验分类、转化、归纳等数学思想方法,并能初步应用这些思想方法解决简单的实际问题。
4、掌握三种统计图的相互转化。经历根据具体问题选择合适的统计图来清晰、有效地展示数据的过程,提高选择和处理信息的能力。
5、能分析简单问题的数量关系,并能用代数式表示;能解释一些简单代数式的实际背景或几何意义;能根据给定的问题列出代数式并会求代数式的值。通过简单的实例,认识常量和变量,并在具体情境中了解函数概念。通过常量与变量的辨证关系,初步树立运动变化的观点,感受数学和现实世界的联系。
6、经历探索整式加减运算法则的过程,理解整式加减运算的算理,进一步发展观察、归纳、类比、概括等能力,发展有条例的思考及语言表达能力。能熟练的进行整式的加减运算。
7、掌握简单的估算方法。经历估算过程,并结合具体问题。感受大数的意义,进一步发展数感。
8、在学习和探索一元一次方程解法和应用的过程中,通过自主学习,相互交流,提高学习能力,增强合作意思,在探索中养成克服困难的意志。
四、主要措施
1、注重既要从感性认识出发,重分利用实例和图形的直观性去认识图形。又要从具体的实例和图形中抽象出概念的本质属性,从理性上认识图形。
2、因为有理数、相反数、绝对值以及有理数大小的比较,都可用数轴表示,因此在教学过程中注意数形结合思想的培养。
3、重视对学生运用有理数表示实际问题中的量,培养学生利用有理数运算解决实际问题的能力。
4、注重对生活实际问题中统计现象的研究,引导学生有兴趣的观察、分析和讨论教材中提供的丰富、鲜活的素材,并从生活中收集有关的实例,以增强学生的体验和用数学的意识。
5、重视在具体情境中探索数量关系或规律的活动,使学生经历符号化的过程,不要以教师的讲解代替学生的主体活动。抓住特殊与一般的辨证关系,初步训练数学抽象和变量代换等基本的数学思想。
6、注重学生在探索、发现与合作交流中的参与程度、思维水平和抽象能力的培养。
7、教学中教师应立足于学生的生活经验和已有的数学活动经验,把“身边数学”引入课堂,创设一个有利于学生活动、探索、交流的空间。
8、注意学生方程意识的建立,培养学生运用方程解决实际问题的能力。鼓励学生进行质疑和大胆创新。
初一数学教案篇3
教学内容分析
教育不只是一种简单的“告诉”。学生拥有自己的独立思考水平和认知系统。当他们遇到一个新的待解决的问题情境时,他们会自觉而主动地从自己已有的知识架构和认知经验中摸索、收集、调动处理问题的方法和策略。三角形边的关系这一内容是新教材新增加的内容,并安排在第二学段。通过这一内容的学习,使学生在已经建立三角形概念的基础上,进一步深化理解三角形的组成特征,加深学生对三角形的认识,同时,也为以后学习三角形与四边形及其他多边形的联系与区别打下基础。
根据新课标的精神,要改变学生学习的方式,让学生经历“数学化”、“做数学”等过程,并注重与生活实际紧密联系,学有价值的数学。根据这一教学内容在教材中所处的地位与作用,以及新课标的要求,我认为设计这节课的理念是:活动参与、自主建构,联系生活、应用数学。
教学目标
知识目标
知道和理解“三角形任意两边的和大于第三边”,能用它解释一些生活现象,解决一些简单的生活问题。
能力目标
通过动手操作、小组验证,体验探索三角形边的关系的过程,培养猜测意识和自主探索、合作交流的能力。
情感目标
经历探究、发现、验证“三角形任意两边的和大于第三边”的过程,体验合作学习和数学学习的快乐。
教学重点
三角形三边关系的实验与探究
教学难点
三角形三边关系的探究过程。
教学关键
使学生理解三角形边的关系
教学准备
课件、三根小棒、三边关系试验报告单每组四根小棒
教学方法
自主探究小组讨论
课程类型
学科课程
教学过程
活动的组织与实施(含教师活动和学生活动)
设计意图
时间分配
一、复习旧知,导入新课
我手上拿的是什么?(三角板)它是什么图形呢?(三角形)谁来说说什么是三角形?怎样理解这个“围”字(端点首尾相连)。同学们还知道三角形的哪些知识?关于三角形的知识还有很多,我们继续往下看。
复习旧的知识,使新旧知识之间有很好的连接
2分钟
二、动手操作,发现问题
师:老师这里有三根小棒,分别长3、5、10厘米,这3根小棒能围成一个什么图形?
生:三角形。
师:谁愿意上来围一围?围的时候要注意小棒首尾相连。
师:这三根小棒为什么围不成三角形呢?三角形的三条边之间到底有什么关系呢?今天,我们就一起来研究三角形的三边关系(板书课题)
三、猜想验证,发现规律
师:我们发现这三根小棒不能围成三角形,怎样做才能围成三角形呢?
生:换一根小棒
师:怎样换?同学们说的都是你们的猜想(课件演示猜想1)
1、学法指导师:你们的这些猜想是否正确,三角形的三条边到底有什么关系?我们可以通过做实验来验证一下,现在老师给同学们准备了一些材料:3厘米、5厘米、8厘米、10厘米小棒各一根一起试着围一围三角形。同学们亲自动手摆一摆,拼一拼,看看有什么结果。先看要求(大屏幕)操作要求:(1)、2人一组合作完成四种拼法(2)、围三角形时要注意首尾相连。(3)、完成后,填写好活动记录表准备交流
2、动手操作,寻找规律(师巡视,并指导)
3、交流汇报,探究规律。
师:哪个小组愿意来汇报。小组上台展示,
3厘米、8厘米、10厘米能
3厘米、5厘米、10厘米不能3厘米、5厘米、8厘米不能5厘米、8厘米、10厘米能师:其它组有不同意见吗?
师:仔细观察四种结果,有的围不成,而有的却能围成。这是为什么呢?先看不能围成三角形的每组小棒的长度之间有什么关系?说说你能发现些什么?同桌讨论一下。能围成三角形的这几组小棒长度之间又有什么联系?
三根小棒要围成三角形,必须满足什么条件?
通过刚才的实验和分析,你发现三角形三条边长度之间有什么关系吗?先看不能围成三角形的这组情况,谁愿意说说3、5、10这三根小棒为什么不能围成三角形?
生:
师:其他同学赞同吗?谁再来说一说。
师:我明白了,3厘米的边是不能和5厘米、10厘米的边围成三角形的,因为这两条边之和小于第三条边。(板书3+4〈 8)你很会观察。
(课件演示)师:再说3、5、8这三根,同学们有些争议,到底它们能不能围成三角形呢?不能,为什么?有谁愿意谈谈?
生:3+5=8重合了不能
师:是这样吗?(课件演示)请看大屏幕。
师:真的是这样,通过演示现在明白这个同学的意思了吗?谁愿意再来说一说。
师:通过以上的动手操作和探究分析,我们发现了当两边之和小于、等于第三条边时,这3条边是围不成三角形的。
师:那么怎样才能围成三角形呢?
生:两条边加起来要大于第三边就行了。
师(板书):两边之和大于第三边
师:我们来看看能围成三角形的这两组是不是这样的呢,3+8>10、8+5>10看起来是这样的。
3)师:回头看不能围成的情况,也有3+8>4、4+8>3、3+8>5、5+8>3(两边之和大于第三边)的情况,怎么就不能围成三角形呢?
生:有一种不符合就不行了
师:看来只是其中的两条边之和大于第3条边是不完整的
生1:加“任何”、“任意”
生2:其他两边之和都大于第三条边。
生3:无论哪两条边之和都要大于第三边。
4、归纳小结
师:看来只是其中的两条边之和大于第3条边是不完整的,
师:这句话概括说就是:任意两边之和大于第三边(板书:任意)师:是这样吗?再挑选一组能围成三角形的三条边,来验证:生:3+4>5、3+5>4、4+5>3,师:这个例子证明了你的想法是对的,这两个三角形的三边关系都是:任意两边之和大于第三边(齐读)
四、运用结论,加深理解
师:我们已经知道三角形的三边关系,下面让我们来判断几道题目
1、快速判断。
3cm、5cm、() 4cm
7cm、4cm、() 2cm
6cm、3cm、() 1cm
2cm、3cm、() 3cm
师:为什么围不成?你是怎么判断的?
2、出示p82例3图
这是小明上学的路线图,同学们仔细看一看,他可以怎样走?
3、这几条路中,哪条最近?这是为什么呢?
老师在生活中还看到了这么一种现象:(课件演示)公园里有一条这样的路,路的两旁是草坪,为什么很多人都往草坪中间走?师:今天你有什么收获?
其实数学就在我们身边,只要你平时多观察、多动脑,你一定能成为数学的好朋友。
开发学生的动手能力和观察能力,在实践中发现问题并尝试找出问题的原因反复试验,加深同学的理解,猜想验证,发现其内在规律增强小组合作意识以及动手操作能力锻炼同学发言及表达能力
通过小组讨论,发现问题,尝试找出原因,激发学生自主学习的精神在教学过程中不断引导,自主发现问题,加深对知识的理解和巩固运用练习,巩固学习的知识,加深印象
3分钟5分钟7分钟3分钟5分钟10分钟5分钟
板书设计
三角形边的关系两边之和大于第三边
教学反思
本节课巩固应用部分的三个环节,是从学生的学习认知规律出发,遵循从易到难的原则,分巩固性练习、应用性练习、拓展性练习三个层次。并与学生身边的生活例子相结合,既能体现数学教学生活化的新理念,又能有效地激发学生的学习兴趣,拓展学生的思维,提高学生的数学学习能力。
以上教学设计,以学生的学习心理为基础,通过简单的动手操作,创设有效的“数学问题情境”,激发学生强烈的探究欲望。通过引导学生大胆的猜想,积极的验证和合理的归纳,使学生学到新知识的同时,经历数学知识的形成过程,这样的教学将会有效地激活了学生的数学思维,使学生在知识、能力,以及情感态度等方面都将得到较好的发展。又通过摆图形,寻找数据间的关系;又通过数据的整理和分析,确定图形的存在性和图形具有的性质,使数形紧密结合,渗透了数形结合的思想方法;同时对不同类型三角形都具有的共性归纳总结,渗透了数学的归纳思想。教学中始终以这一核心的思想为教学灵魂,时时渗透,处处体现。
回顾与反思
师生共同讨论得出结论,教师指出注意的问题
沙场练兵
一、比一比看谁最快、最棒:
1、-0.4ab3的系数是次数是。
2、多项式3x2+2x-3x-4的最高次项是,同类项是,常数项是。
3、去括号3a-(2ab-3b2+4)=
4、与2a-1的和为7a2-4a+1的多项式是
二、应用知识,提高能力,你一定行:
已知小明的年龄是岁,小红的年龄比小明的2倍少4岁,小华的年龄比小红的年龄的一半多一岁,求三个人的年龄和。
学生抢答
学生独立思考,然后在本上做,找一名同学板书。
培养学生运算能力和分析问题解决问题的能力。
回顾与反思
本节课的学习你有哪些收获?
应注意什么问题?(出示本章的知识结构图:)
师生互动梳理知识。弄清本章所学的概念、法则和有关的知识内容以及它们之间的联系与区别,并写出知识结构图。
布置
作业p1926、8、11
板书设计:
回顾与反思
一、知识结构
二、1、整式有关概念注:单次
三、整式加减(注:同类项的确定,去括号的应注意问题)
教学反思:
本节课在学生充分思考的基础上,开展小组交流和全班交流。使学生在反思交流的过程中,师生共同建立知识体系得出本章知识结构图,在整个过程中不仅注重对知识的总结,更注重对知识形成过程的反思归纳。留给了学生充足的时间和空间,反思知识的发生发展过程。但由于留给学生时间较长,课时感到很紧张,今后要注意改进。
初一数学教案篇4
一、教学目标:
1、知识目标:
使学生理解同类项的概念和合并同类项的意义,学会合并同类项。
2、能力目标:
培养学生观察、分析、归纳和动手解决问题的能力,初步使学生了解数学的分类思想。
3、情感目标:
借助情感因素,营造亲切和谐活泼的课堂气氛,激励全体学生积极参与教学活动。培养他们团结协作,严谨求实的学习作风和锲而不舍,勇于创新的精神。
二、教学重点、难点:
重点:同类项的概念和合并同类项的法则
难点:合并同类项
三、教学过程:
(一)情景导入:
1、观察下面的图片,并将这些图片分类:
你是依据什么来进行分类的呢?
生活中,我们常常为了需要把具有相同特征的事物归为一类。
2、对下列水果进行分类:
(二)新知探究1:
1、对下列八个单项式进行分类:
a,6_2,5,cd,-1,2_2,4a,-2cd
这些被归为同一类的项有什么相同的特征?
2、揭示同类项的概念。
同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。另外,所有的常数项都是同类项。
?3.4合并同类项》同步练习
1、已知代数式2a3bn+1与-3am-2b2是同类项,则2m+3n=________.
2、若-4_ay+_2yb=-3_2y,则a+b=_______.
3、下面运算正确的是( )
a.3a+2b=5ab b.3a2b-3ba2=0
c.3_2+2_3=5_5 d.3y2-2y2=1
4、已知一个多项式与3_2+9_的和等于3_2+4_-1,则这个多项式是( )
a.-5_-1 b.5_+1
c.-13_-1 d.13_+1
?3.4合并同类项》测试
1、下列说法中,正确的是( )
a.字母相同的项是同类项
b.指数相同的项是同类项
c.次数相同的项是同类项
d.只有系数不同的项是同类项
初一数学教案篇5
教学目的
1.理解用一元一次方程解工程问题的本质规律;通过对“工程问题”的分析进一步培养学生用代数方法解决实际问题的能力。
2.理解和掌握基本的数学知识、技能、数学思想方法,获得广泛的数学活动经验,提高解决问题的能力。
重点、难点
重点:工程中的工作量、工作的效率和工作时间的关系。
难点:把全部工作量看作“1”。
教学过程
一、复习提问
1.一件工作,如果甲单独做2小时完成,那么甲独做i小时完成全
部工作量的多少?
2.一件工作,如果甲单独做。小时完成,那么甲独做1小时,完成
全部工作量的多少?
3.工作量、工作效率、工作时间之间有怎样的关系?
二、新授
阅读教科书第18页中的问题6。
分析:1.这是一个关于工程问题的实际问题,在这个问题中,已经知道了什么? 已知:制作一块广告牌,师傅单独完成需4天,徒弟单独做要6天。
2.怎样用列方程解决这个问题?本题中的等量关系是什么?
[等量关系是:师傅做的工作量+徒弟做的工作量=1)
[先要求出师傅与徒弟各完成的工作量是多少?]
两人的工效已知,因此要先求他们各自所做的天数,因此,设师傅做了x天,则徒弟做(x+1)天,根据等量关系列方程。 解方程得 x=2
师傅完成的工作量为= ,徒弟完成的工作量为=
所以他们两人完成的工作量相同,因此每人各得225元。
三、巩固练习
一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现
由甲独做10小时;
请你提出问题,并加以解答。
例如 (1)剩下的乙独做要几小时完成?
(2)剩下的由甲、乙合作,还需多少小时完成?
(3)乙又独做5小时,然后甲、乙合做,还需多少小时完成?
四、小结
1.本节课主要分析了工作问题中工作量、工作效率和工作时间之
间的关系,即 工作量=工作效率×工作时间
工作效率= 工作时间=
2.解题时要全面审题,寻找全部工作,单独完成工作量和合作完成工作量的一个等量关系列方程。
五、作业
教科书习题6.3.3第1、2题。
初一数学教案篇6
一、教学目标
1、通过七巧板的制作,拼摆等活动,进一步丰富对平行,垂直及角等有关内容的认识,积累数学活动经验。
2、能用适当的图形和语言表示自己的思考结果。
二、教学重点和难点
本堂内容的重点是七巧板的制作和拼摆,难点是拼图所要表现的几何图形,对已学过的平行,垂直及角等有关内容的有机联系和语言表达。
三、教学手段
引导活动讨论
引导:意在教师讲解七巧板的历史,七巧板制作的方法。
活动:人人参与制作七巧板,拼摆七巧板的图案。
讨论:对自己所拼摆的图形与同伴交流,与全班同学交流(利用多媒体工具)与老师进行交流。
四、教学方法
启发式教学
五、教学过程
1 创设情景,引入新课
先用多媒体显示各种已拼摆好的动物,交通工具,植物等等然后介绍它是由怎样的一副拼板拼摆而成的(不一定要七巧板)。紧接着就介绍七巧板的历史,制作方法,让学生制作一副七巧板,并涂上不同的颜色。
2 合作交流,探索新知
利用所做的七巧板拼出两个不同的图案,并与同伴交流,与全班同学交流,与老师交流。
(1) 你的拼图用了什么形状的板?你想表现什么?
(2) 在你的拼出的图案中,指出三组互相平行或垂直的线段,并将它们间的关系表示出来。
(3) 在你拼出的图案中,找出一个锐角、一个直角、一个钝角,并将它们表示出来,它们分别是多少度。
通过学生的展示,教师作适时的评价,树立榜样,培养学生之间的竞争意识。
3 范例教学
介绍老师制作的3副游戏板,并用多媒体显示十几种的拼摆图案,通过生动有趣的图案,激发学生的创造欲望,提出你还有材料吗?有信心凭自己的智慧制作一副游戏板吗?意在充分发挥学生的创造能力、想象能力、合作交流能力(可由附近的同学四人小组制作完成)。
4 反馈练习
由四人小组制作的游戏板,拼摆二个不同图案,利用多媒体,展示给全体同学,用语言表示拼图所表现的内容,与所学的知识的联系,呈现平行,垂直及角的有关知识。
5 归纳小结
通过制作七巧板及游戏板进一步学会了画平行线段、垂线段、找线段中点的方法,通过拼摆丰富了对平行、垂直及角等有关内容的认识,积累数学活动的经验,提高了空间观念和观察、分析、概括表达的能力。
六、练习设计
利用20cm20cm的硬纸板做一副游戏板,利用它拼出5个自己喜欢的图案,并把它画下来,布置教室的环境。
七、板书设计
4.7有趣的七巧板
(一)知识回顾 (三)例题解析 (五)课堂小结
(二)观察发现 (四)课堂练习 练习设计
初一数学教案篇7
教学目标
1。使学生理解正数与负数的概念,并会判断一个给定的数是正数还是负数;
2。会初步应用正负数表示具有相反意义的量;
3。使学生初步了解有理数的意义,并能将给出的有理数进行分类;
4。培养学生逐步树立分类讨论的思想;
5。通过本节课的教学,渗透对立统一的辩证思想。
教学建议
一、重点、难点分析
本课的重点是了解正数与负数是由实际需要产生的以及有理数包括哪些数。难点是学习负数的必要性及有理数的分类。关键是要能准确地举出具有相反意义的量的典型例子以及要明确有理数分类的标准。
正、负数的引入,有各种不同的方法。教材是由学生熟知的两个实例:温度与海拔高度引入的。比0℃高5摄氏度记作5℃,比0℃低5摄氏度,记作—5℃;比海平面高8848米,记作8848米,比海平面低155米记作—155米。由这两个实例很自然地,把大于0的数叫做正数,把加“—”号的数叫做负数;0既不是正数也不是负数,是一个中性数,表示度量的“基准”。这样引入正、负数,不仅有利于学生正确使用正、负数表示具有相反意义的量,而且还将帮助学生理解有理数的大小性质。把负数理解为小于0的数。教材中,没有出现“具有相反意义的量”的概念。这是有意回避或淡化这个概念。目的是,从正、负数引入一开始就能较深刻的揭示正、负数和零的性质,帮助学生正确理解正、负数的概念。
关于有理数的分类要明确的是:分类标准不同,分类结果也不同,分类结果应是不重不漏,即每一个数必须属于某一类,又不能同时属于不同的两类。
二、教法建议
这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的。从内容上讲,负数比非负数要抽象、难理解。因此在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则。例如,在讲解有理数的概念时,让学生清楚地认识有理数与算术数的根本区别,有理数是由两部分组成:符号部分和数字部分(即算术数)。这样,在理解算术数和负数的基础上,对有理数的概念的理解就简便多了。
为了使学生掌握必要的数学思想和方法,在明确有理数的分类时,可以有意识地渗透分类讨论的思想方法,理解分类的标准、分类的结果,以及它们的相互联系。通过正数、负数都统一于有理数,可以将对立统一的辩证思想的逐步树立渗透到日常教学中。
三、正数与负数概念的理解
1﹒对于正数和负数的概念,不能简单的理解为:带“+”号的数是正数,带“—”号的数是负数。
2﹒引入负数后,数的范围扩大为有理数,奇数和偶数的外延也由自然数扩大为整数,整数也可以分为奇数和偶数两类,能被2整除的数是偶数,如…—6,—4,—2,0,2,4,6…,不能被2整除的数是奇数,如…—5,—4,—2,1,3,5…
3﹒到现在为止,我们学过的数细分有五类:正整数、正分数、0、负整数、负分数,但研究问题时,通常把有理数分为三类:正数、0、负数,进行讨论。
4﹒通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数;负整数和0统称为非正整数。
四、有理数的分类
整数和分数统称为有理数。1)正整数、零、负整数统称为整数;正分数、负分数统称为分数。
2)整数也可以看作分母为1的分数,但为了研究方便,本章中分数是指不包括整数的分数。
3)注意概念中所用“统称”二字,它与说“整数和分数是有理数”的意思不大一样。前者回避了分数是否包括整数的问题,即使把整数包括在分数范围内,说“统称”还是不错,而用后一种说法就欠妥了。
4)分数和小数的区别:
分数(既约分数)都可表示成小数,但不是所有的小数都能表示成分数的。
5)到目前为止,所学过的数(除π外)都是有理数。
初一数学教案7篇相关文章: