乘法的教案6篇

时间:
Lonesome
分享
下载本文

教案在制订的过程中,你们一定要注意创新教学方法,为完成接下来的教学任务,需要制定一份详细的教案,下面是公文溜溜小编为您分享的乘法的教案6篇,感谢您的参阅。

乘法的教案6篇

乘法的教案篇1

教学内容:课本第99页例8以及练习十九的3-6题。

教学要求:1、使学生理解循环小数、有限小数、无限小数的概念,能用循环小数或循环小数的近似值表示除法中的商。知道有限小数和无限小数的区别。使学生受到辩证唯物主义启蒙教育。

教具准备:小黑板

教学过程:

一、复习:

看谁算得快。

第一组:1.69÷26 58.3÷11

第二组:1÷35 8.6÷11

两个数相除时,会出现两种情况,第一组题都可以除尽,第二组都除不尽,等号后面的商该怎样写呢?

二、新授

1、出示例8挂图,说说从图中知道了哪些信息?

学生根据问题尝试列式计算,并截取商的近似值。

300÷45≈?个)

3、小组讨论:怎样取近似值才是合理的?(6个)

4、:根据本题的要求,用“四舍五入”的方法取近似值是不合理的,合适的近似数是6,而不是7。如果买了7个,就要超过300元。

完成试一试。

(1)学生独立完成练习;

(2)讨论:谁的想法合理?

(3)根据本题的要求,用“四舍五入”的方法取近似值也是不合理的,合适的近似数是9,而不是8。因为过河8次后还剩6人,还需要用船再送一次。

综合练习

1、做练习十九第3题。一个人造地球卫星每小时大约运行30000千米。一架超音速飞机每小时大约飞行2千米。算一算,卫星运行的速度大约是这架飞机的多少倍?(得数保留整数)根据商不变规律,先把“30000÷2”转化成“300÷22”再进行计算。

2、练习十九4、5题。

重点指导学生根据具体的问题情境用合理的方法求出商的近似值。

3、练习十九第6题。

阅读“你知道吗?”

自主阅读,交流阅读后的认识。

乘法的教案篇2

教学内容:

分数乘法

教学目标:

1、能力目标:能根据解决问题的需要,探究有关的数学信息,发展初步的分数乘法的能力。

2、知识目标:继续学习整数乘以分数的计算方法,让学生能够计算整数的几分之几是多少,学生能够熟练准确的计算出一个整数乘以不同分数的结果。

3、情感目标:使学生感受到分数乘法与生活的密切联系,培养学习数学的良好兴趣。

重点难点:

学生能够熟练的计算出整数乘以不同分数的结果。

教学方法:

师生共同归纳和推理

教学准备:

教学参考书、教科书

教学过程:

一、复习导入

教师出示教学板书,请学生计算下列分数乘法运算题。

教师:来回巡视学生的做题情况,并提问学生说说自己如何计算的?

学生寻找完毕,纷纷举手准备回答问题。

教师提问学生回答问题。(整数乘以分数,整数乘以分子,分母不变。注意两种约分方式。)

二、讲授新课

教师出示课本例题:小红有6个苹果,淘气的苹果是小红的 ;笑笑的苹果是小红的 ,淘气和笑笑各有几个苹果?

教师让学生思考这个例题,并对学生进行提问。

学生自己动手填完课本例题上的方格。

教师提问学生说一说自己是怎样计算的?

教师和学生对比这两个题目的区别和联系。学生初步理解整数乘以分数的数学意义。

三、巩固练习

做课本5页试一试,36的 和 分别是多少?

注意让学生体验求一个整数的几分之几是多少的数学意义。

四、课堂小结

同学们,这一节课你学到了哪些知识?(提问学生回答)

板书设计:

分数乘法

整数乘以分数的数学意义:就是求整数的几分之几是多少?

乘法的教案篇3

教学目标:

1.使学生通过自主探索,理解分数乘整数的意义与整数乘法相同,初步理解分数乘整数的计算法则。

2.使学生进一步增强运用已有知识经验探索并解决问题的意识,体验探索学习的乐趣。

教学重点:

分数乘整数的意义和计算法则。

教学难点:

分数乘整数的计算方法以及算法的优化。

教学方法:

自主合作探究。

教具准备:

多媒体

教学过程:

一、复习引入

1.同学们,我们已经学会了分数的加法和减法,下面口算。

2.今天我们来学习分数乘法。板书

谁能编一道分数乘法算式(择几道板书黑板一侧)

分数乘法有很多,今天先研究其中一种:分数乘整数。

看了今天的课题,可能有同学马上想知道分数乘法怎么算呢?其实,每一个新知识的产生都与原有的旧知密切相关,对于分数乘整数来说,当然也是如此。下面我们来讨论!

二、探究

1.理解意义。

出示例题1:做一朵绸花用 米绸带。

(1)小芳做了3朵这样的绸花,一共用了几分之几米绸带?

(2)小华做7朵这样的绸花,一共用了几分之几米绸带?

(3)学校庆国庆活动一共要做15朵这样的绸花,你能用加法计算出几分之几米绸带?

这么多米加起来,你有什么感觉?有没有什么好办法?有没有什么好办法?

导入:如果把这道加法算式改写成乘法,你特别需要知道什么?

谁能说说 ×3表示什么意思?7×呢?

前面大家所说的(黑板一侧板书的)乘法算式,谁能说说他们的意思?对比一下,你们觉得是分数加法简便,还是分数乘法简便?

2.探究算法。

现在我们来看分数乘整数怎样计算。我们先来研究×3, ×3=怎么算呢?请大家尝试解决。指名板演典型算法。

交流:第二种按照加法计算,不简便,重点体会第二种和加法有着联系: ,符合加法计算结果,是正确的,也是简便的。同时借助直观图观察验证。

练习:×7,与原来加法结果比较,完全正确。

谁能试着总结一下分数乘整数的计算方法:分母不变,分子和整数相乘,所得积做分子。

继续研究:×30

提示:这道题与前面几题相比可能有些新情况,你看出来了嘛?先试试看,再同桌交流。

指名板演新情况:都有相同点?(约分),不同是什么?(主要是约分的区别)

讨论:约分的先后序。(先乘后约,还是先约后乘),体会到先约后乘的简便。

练习:先判断可不可以约分?怎样约分?

总结注意事项:能约分的先约分再乘。

三、练习

填一填:练习第一、二题。

算一算:完成3第三、七题。

四、总结

本节课学习了那些内容?通过学习你有那些收获?还有那些疑问?

五、作业

练习八第2题、第4题。

乘法的教案篇4

学习目标

1、 理解积的乘方法则。

2、 会计算积的乘方。

3、 会进行简单的幂的混合运算。

学习重难点 重点:积的乘方法则。

难点:积的乘方法则的推导过程。

自学过程设计 教学过程设计

一、看一看

1、积的乘方法则:

2、完成课堂作业部分(写在预习本上)

二、做一做:

1、看看运算过程用到哪些运算律?运算结果有什么规律?

(ab)2=(ab)(ab)=(aa)(bb)=a( )b( )

(ab)3=______________=____________=a( )b( )

(ab)n=(ab)(ab)(ab)=aaabbb=anbn

即:(ab)n=__________(n为正整数)

2、计算:

(1)(2a)3= (2) (5b)3=

(3) (xy2)2= (4) (2x3)4=

3、下面的计算对不对?如果不对,应怎样改正?

(1)b3b3=2b3

(2) x4x4=x16

(3)(a5)2=a7

(4)(a3)2a4=a9

(5)(a3)2a4=a9

(6)(ab2)3=ab6

(7) (2a)2= 4a2

(8)x3+x4=x7

(9) y22y2=2y4

(10) (a2b)3=a6b3

(11) a42a3=3a7

4、计算:

(1)(x5)2+(x2)5=___________

(2) (3102)2=___________

(3) (x3)( )x2=x14

(4) (2a2y4)3=

(5) m2m3=

(6) (a2b2)m=

(7) (2104)2=

(8) (6xy)2=

(9) (x2y)3(xy3)2=

(10) (x2y3)4(x)8(y6)2=

5、( )20xx(-3)20xx =

6、0.12530(-8)30=

7、2444(-0.125)4=

8、若xn=2,yn=5,则 (xy)n=________

9、已知 48m16m=29 求m的值

10、已知 x+y=a

求(x+y)3(2x+2y)3(3x+3y)3的值

三、想一想

你还有哪些地方不是很懂?请写出来。

_________________________________________________________________________________________________________

预习展示:

1、根据乘方的意义(幂的意义)和同底数幂的乘法法则(46)3表示什么?

2、那(46)5,(ab)3又等于什么?

由特殊的(ab)3=a3b3出发,你能想到一般的公式吗?

猜想:(ab)n=anbn

(abc)n= (n为正整数),为什么?

应用探究:

1.下列计算正确的是( )

a.

d、

2.计算下列各题

3.计算下列各题

4、用简便的方法计算:

5、木星是太阳系九大行星中最大的一颗,木星可以近似地看成球体。已知木星的半径大约是7104km,木星的体积大约是多少km3(п取3.14)。

拓展提高:

若n为正整数,且 ,求

的值.

堂堂清:

1. 若(9 ) =3 ,则正整数m的值为 .

2.若将棱长为2的正方体切成8个棱长为1的小正方体,则所有小正方体的表面积的和是原正方体表面积的_______倍; 若将棱长为3的正方体切成27个棱长为1的小正方体,则所有小正方体的表面积的和是原正方体表面积的_______倍; 若将棱长为n(n1,且为整数)的正方体切成n3个棱长为1的小正方体,则所有小正方体的表面积的和是原正方体表面积的_______倍.

3. 化简求值:(-3a2b)3 -8(a2)2(-b)2(-a2b),其中a=1,b=-1.

4. 已知xn=2,yn=3,求(x2y)2n的值.

教后反思 这节课又学习了一节新的运算:积的乘方,有了前面学习的过程,那么这几课也采用前面的教学过程,学生接受的还是比较好的。但是学生对于单独的一种运算还可以做的游刃有余,但是对于多种运算在一起的混合运算就有点难度。

乘法的教案篇5

教学目标:

知识与技能

1.理解分数乘整数的意义。

2.通过主动参与教学过程,理解分数乘整数的计算法则的算理,能正确计算。

过程与方法

使学生经历解决问题的过程,体验演绎推理、归纳总结的学习方法。

情感态度与价值观

1.感受数学与实际生活之间的联系,激发学习兴趣。

2.培养学生动手动脑的学习习惯,体会数学知识之间内在联系的逻辑之美。

教学重点:

理解分数乘整数的意义,探究计算法则。

教学难点:

正确计算及约分方法。

教学过程:

一、以旧引新,唤醒认知

(一)列式计算,说说你是怎样想的? 5个12相加是多少?10个23的和是多少? (概括:整数乘法的意义:求几个相同加数的和的简便运算)

(二)口答

(三)感受分数乘整数的意义

21个相加太麻烦了,有没有简单的表示方法?(学生会想到用乘法表示成 ×21)然后让学生说一说 ×21表示的含义。 揭题:怎样计算 ×21呢?今天我们就来学习分数乘法——分数乘整数。

二、出示问题,探索新知

1、自主学习红点1。

(1)出示窗1:小鸟风筝的尾巴是用5根布条做成的,小鱼风筝的尾巴是用6根布条做成的,每根布条长都是 米。学生提出用乘法计算的数学问题。 出示红点1问题:做小鸟风筝的尾巴一共需要多少米的布条?指名口头列式。

(2)自学提示: ×5表示什么意义?两个小朋友分别是怎样计算的?学生自学课本47页。

(3)交流、质疑。

(4)比较这两种方法的联系和区别。 计算5个 相加是多少,一种方法是加法,另一种方法是乘法。 但结果是相同的。你喜欢哪种方法? 教师指出,用乘法计算比较简便,其中连加的步骤在计算时可以省略。 板书简便的写法: ×5= = (米)

2、自主学习红点2。

(1)出示问题:做小鱼风筝的尾巴,一共需要多少米的布条? 学生尝试独立解决。指名板演。集体评议。

(2)比较计算过程,分类梳理:a先计算再约分;b先约分再计算。讨论:哪种算法更简便? 6× = = =3(米) 比较两种先约分再计算的方法: ×6= =3(米) ×6= ×6=3(米) (3)小试牛刀(突破难点):用自己喜欢的方法计算。 6× = ×13= 评议谈体会。强调:分数乘整数,通常先约分再计算比较简便。

3、归纳概括: 一个分数乘整数表示什么?(求几个相同加数的和。) 分数乘整数怎样计算?(用分子和整数相乘,分母不变 ) 应注意什么?(能约分的要先约分)

三、分层练习,强化认知 .巩固分数乘整数的意义

1、自主练习第1、2题:看图写算式。集体订正,说说乘法算式的意义和计算过程。

2、计算擂台。自主练习第3题,巩固分数乘整数的算理和算法。

3、明辨是非。

4、结合实际,解决问题。

(1)一个正方体的礼品盒,底面积是 1/9平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?

(2)美术馆要进行美术展览,有5张画是边长7/10 米的正方形的,如果为这几幅画配上镜框,需要木条多少米?

四、总结

本节课学习了那些内容?通过学习你有那些收获? 分数与整数相乘,要用分数的分子与整数相乘,分母不变。计算时能约分的可以先约分再计算出结果。

乘法的教案篇6

教学内容:p6例5、做一做,p9练习一第10—12、14题。

教学目标:

1、使学生进一步掌握小数乘法的计算法则,并能正确计算。

2、使学生初步理解和掌握:当乘数比l小时,积比被乘数小;当乘数比1大时,积比被乘数大。

3、理解倍数可以是整数、也可以是小数,学会解答倍数是小数的实际问题。

4、养成认真计算,及时检验的良好学习习惯。

教学重点:运用小数乘法的计算法则;正确计算小数乘法。

教学难点:

正确点积的小数点;初步理解和掌握:当乘数比l小时,积比被乘数小;当乘数比1大时,积比被乘数大。

教学过程:

一、复习准备:

1、口算:

0.9×67×0.081.87×00.24×21.4×0.3

0.12×61.6×54×0.2560×0.5

老师抽卡片,学生写结果,集体订正。

2、不计算,说出下面的积有几位小数。

3、思考并回答。

(1)做小数乘法时,怎样确定积的小数位数?

(2)如果积的小数位数不够,你知道该怎么办吗?如:0.02×0.4。

4、揭示课题:这节课我们继续学习小数乘法。(板书课题:较复杂的小数乘法)。

二、新授:

同学们,你们见过鸵鸟吗?知道鸵鸟是一种跑得比较快的动物吗?有一只鸵鸟正在帮助2个小朋友解难呢!我们一起去看看吧!鸵鸟正驮着小朋友向前奔跑,后面一只凶猛的野狗紧紧追上来了!小朋友说:“哎呀,它追上来了!”鸵鸟说:“别担心,它追不上我!”

1、教学例5:非洲野狗的速度是56千米/小时,鸵鸟的速度是非洲野狗的1.3倍,鸵鸟的速度是多少千米/小时?

(1)想一想这只非洲够能追上这只鸵鸟吗?为什么?(鸵鸟的速度是非洲狗的1.3倍,表示鸵鸟的速度除了有一个非洲狗那么多,还要多,所以非洲狗追不上鸵鸟。)

(2)是这样的吗?我们一起来算一算?

①怎样列式?

②为什么这样列式?(求56的1.3倍是多少,所以用乘法.)

使学生明确:现在倍数也可以是比1大的小数。

(3)生独立完成,指名板演,集体订正。

(4)算得对吗?用什么方法可以判断他做正确没有?(方法1:把因数的位置交换一下,再乘一遍;方法2:用计算器来验算;方法3:用原式再做一遍;方法4:观察法.因为第二个因数大于1,所以积一定大于第一个因数。可以发现答案是7.28是错的。)

所以每个小朋友要养成认真做题,仔细检查的良好习惯.

(5)通过刚才同学们的计算、验算,鸵鸟的速度是72.8千米/小时,比非洲狗的速度怎样?能追上鸵鸟吗?说明刚才我们的想法怎样?现在我们再来看一组题。

2、看乘数,比较积和被乘数的大小。

①(出示练习一第10题中积和被乘数的大小)先计算。

②引导学生观察:这两道例题的乘数分别与l比较,你发现什么?

③乘数比1大或者比1小时积的大小与被乘数有什么关系?为什么?(因为1.20.4的乘数是0.4比1小,求的积还不足一个1.2,所以积比被乘数小;而2.4×3的乘数是3比1大,求的积是2.4的3倍(或3个2.4那么多),所以积比被乘数大。

④你能得出结论吗?(当乘数比1小时,积比被乘数小;当乘数比1大时,积比被乘数大。我们可以根据它们的这种关系初步判断小数乘法的正误。)

⑤专项练习:练习一第12题

先让学生独立判断。集体订正时,让学生讲明道理,明白每一小题错在什么地方。

三、运用

1、做一做:3.2×2.5=0.82.6×1.08=2.708

先判断,把不对的改正过来。

2、p9页第13题

四、体验:今天,你有什么收获?

五、作业:p8页8题,p9页11、14题

乘法的教案6篇相关文章:

生命生命的教案6篇

认识的教案精选6篇

种子的萌发教案6篇

科学活动的教案推荐6篇

草的教案通用6篇

草的教案6篇

6的分成教案7篇

唱歌的教案6篇

书法竖的教案6篇

名著导读的教案6篇

乘法的教案6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
41695